1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yulyashka [42]
2 years ago
15

Solve and receive brainlist​

Mathematics
2 answers:
joja [24]2 years ago
6 0

Answer:

x=4

Step-by-step explanation:

9-1=8

8/2=4

Ivenika [448]2 years ago
3 0

Answer:

x = 4

Step-by-step explanation:

2x + 1 = 9

2x = 9 - 1

2x = 8

x = 4

You might be interested in
Help with 30 please. thanks.​
Svet_ta [14]

Answer:

See Below.

Step-by-step explanation:

We have the equation:

\displaystyle  y = \left(3e^{2x}-4x+1\right)^{{}^1\! / \! {}_2}

And we want to show that:

\displaystyle y \frac{d^2y }{dx^2} + \left(\frac{dy}{dx}\right) ^2 = 6e^{2x}

Instead of differentiating directly, we can first square both sides:

\displaystyle y^2 = 3e^{2x} -4x + 1

We can find the first derivative through implicit differentiation:

\displaystyle 2y \frac{dy}{dx}  = 6e^{2x} -4

Hence:

\displaystyle \frac{dy}{dx} = \frac{3e^{2x} -2}{y}

And we can find the second derivative by using the quotient rule:

\displaystyle \begin{aligned}\frac{d^2y}{dx^2} & = \frac{(3e^{2x}-2)'(y)-(3e^{2x}-2)(y)'}{(y)^2}\\ \\ &= \frac{6ye^{2x}-\left(3e^{2x}-2\right)\left(\dfrac{dy}{dx}\right)}{y^2} \\ \\ &=\frac{6ye^{2x} -\left(3e^{2x} -2\right)\left(\dfrac{3e^{2x}-2}{y}\right)}{y^2}\\ \\ &=\frac{6y^2e^{2x}-\left(3e^{2x}-2\right)^2}{y^3}\end{aligned}

Substitute:

\displaystyle y\left(\frac{6y^2e^{2x}-\left(3e^{2x}-2\right)^2}{y^3}\right) + \left(\frac{3e^{2x}-2}{y}\right)^2 =6e^{2x}

Simplify:

\displaystyle \frac{6y^2e^{2x}- \left(3e^{2x} -2\right)^2}{y^2} + \frac{\left(3e^{2x}-2\right)^2}{y^2}= 6e^{2x}

Combine fractions:

\displaystyle \frac{\left(6y^2e^{2x}-\left(3e^{2x} - 2\right)^2\right) +\left(\left(3e^{2x}-2\right)^2\right)}{y^2} = 6e^{2x}

Simplify:

\displaystyle \frac{6y^2e^{2x}}{y^2} = 6e^{2x}

Simplify:

6e^{2x} \stackrel{\checkmark}{=} 6e^{2x}

Q.E.D.

6 0
2 years ago
The price of a product increased by $75, which was a 15% increase. What was the product's original price?
Leni [432]
75 x 15= 1,125
1,125/100=11.25
75-11.25= 63.75


6 0
3 years ago
Your company withheld $4,463 from your paycheck for taxes. You received a $713 tax refund.
Goryan [66]
<span>This simply means that your actual tax was 3750 because the total withheld - the refund. A tax refund is not an extra money earned by a person, it is actual an excess of what was paid by the person that the IRS have decided to give back to that person.Taxes are usually deducted based on information declared in Form W-4. The yardstick used by IRS is a straightforward method to lessen your assessable wage, yet you have the choice to ascertain your own ordered findings, utilising your genuine deductible costs.</span>
4 0
3 years ago
Help please with this question I will mark branliest
faltersainse [42]

Answer:The pictures not that clear

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
A professor at a local community college noted that the grades of his students were normally distributed with a mean of 84 and a
creativ13 [48]

Answer:

A. P(x>91.71)=0.10, so the minimum grade is 91.71

B. P(x<72.24)=0.025 so the maximum grade could be 72.24

C. By rule of three, 200 students took the course

Step-by-step explanation:

The problem says that the grades are normally distributed with mean 84 and STD 6, and we are asked some probabilities. We can´t find those probabilities directly only knowing the mean and STD (In that distribution), At first we need to transfer our problem to a Standard Normal Distribution and there is where we find those probabilities. We can do this by a process called "normalize".

P(x<a) = P( (x-μ)/σ < (a-μ)/σ ) = P(z<b)

Where x,a are data from the original normal distribution, μ is the mean, σ is the STD and z,b are data in the Standard Normal Distribution.

There´s almost no tools to calculate probabilities in other normal distributions. My favorite tool to find probabilities in a Standard Normal Distribution is a chart (attached to this answer) that works like this:

P(x<c=a.bd)=(a.b , d)

Where "a.b" are the whole part and the first decimal of "c" and "d" the second decimal of "c", (a.b,d) are the coordinates of the result in the table, we will be using this to answer these questions. Notice the table only works with the probability under a value (P(z>b) is not directly shown by the chart)

A. We are asked for the minimum value needed to make an "A", in other words, which value "a" give us the following:

P(x>a)=0.10

Knowing that 10% of the students are above that grade "a"

What we are doing to solve it, as I said before, is to transfer information from a Standard Normal Distribution to the distribution we are talking about. We are going to look for a value "b" that gives us 0.10, and then we "normalize backwards".

P(x>b)=0.10

Thus the chart only works with probabilities UNDER a value, we need to use this property of probabilities to help us out:

P(x>b)=1 - P(x<b)=0.10

P(x<b)=0.9

And now, we are able to look "b" in the chart.

P(x<1.28)=0.8997

If we take b=1.285

P(x<1.285)≈0.9

Then

P(x>1.285)≈0.1

Now that we know the value that works in the Standard Normal Distribution, we "normalize backwards" as follows:

P(x<a) = P( (x-μ)/σ < (a-μ)/σ ) = P(z<b)

If we take b=(a+μ)/σ, then a=σb+μ.

a=6(1.285)+84

a=91.71

And because P(x<a)=P(z<b), we have P(x>a)=P(z>b), and our answer will be 91.71 because:

P(x>91.71) = 0.1

B. We use the same trick looking for a value in the Standard Normal Distribution that gives us the probability that we want and then we "normalize backwards"

The maximum score among the students who failed, would be the value that fills:

P(x<a)=0.025

because those who failed were the 2.5% and they were under the grade "a".

We look for a value that gives us:

P(z<b)=0.025 (in the Standard Normal Distribution)

P(z<-1.96)=0.025

And now, we do the same as before

a=bσ+μ

a=6(-1.96)+84

a=72.24

So, we conclude that the maximum grade is 72.24 because

P(x<72.24)=0.025

C. if 5 students did not pass the course, then (Total)2.5%=5

So we have:

2.5%⇒5

100%⇒?

?=5*100/2.5

?=200

There were 200 students taking that course

6 0
3 years ago
Other questions:
  • A local parking garage charges $2.50 per hour. If Jason parks in the parking
    10·1 answer
  • What is the length of MN¯¯¯¯¯¯¯ ?<br><br> Round to the nearest tenth of a unit.
    12·2 answers
  • What is the solution set to the system of equations
    12·1 answer
  • What cause an anti immigrant sentiment to in crease in the us during the 1800?
    12·1 answer
  • What is log2128 - log232
    5·1 answer
  • What is the mode of the data set?
    6·1 answer
  • jose trabaja 4 3/4 horas el lunes, 3 1/2 horas el martes, 6 3/4 horas el miercoles, 4 1/2 horas el jueves y 6 horas viernes, y 5
    10·2 answers
  • (x - 5)2 + (y-(-3))2 = 34 (x - 5)2 + ( + 3)2 = 34 Exercises 12.2 Complete the following: 1. Find the equation of the circle havi
    5·1 answer
  • A train travels 360 miles in 4.5 hours, moving at a constant speed. How many hours will it take the train to travel 560 miles at
    6·1 answer
  • Theoretical Probability is?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!