It is required an infinite work. The additional electron will never reach the origin.
In fact, assuming the additional electron is coming from the positive direction, as it approaches x=+1.00 m it will become closer and closer to the electron located at x=+1.00 m. However, the electrostatic force between the two electrons (which is repulsive) will become infinite when the second electron reaches x=+1.00 m, because the distance d between the two electrons is zero:
So, in order for the additional electron to cross this point, it is required an infinite amount of work, which is impossible.
Answer:
it moves 25 inches.
Explanation:
the east west bit isn't important, ignore it. if an ant starts at 6 then moves to 19 then we need to subtract 19 from 6, that's 13. then it moves to 7. the difference between 19 and 7 is 12. add that to 13 and you get 25. it's important to remember that there is no such thing as negative distance. if it moved, then it counts.
<span>As the gases go higher in the atmosphere they start to compose or join together</span>
Kinetic energy = (1/2) (mass) (speed)²
Before slowing down, the car's speed is 25 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (25 m/s)²
= (1/2) (1,500 kg) (625 m²/s²)
= 468,750 joules .
After slowing down, the car's speed is 15 m/s,
and its kinetic energy is ...
(1/2) (1,500 kg) (15 m/s)²
= (1/2) (1,500 kg) (225 m²/s²)
= 168,750 joules.
The car lost (468,750 - 168,750) = 300,000 joules of K.E.
The law of Conservation of Energy says:
That 300,000 joules had to go somewhere.
If it's a standard, gas-powered car, then the kinetic energy got
put into the brakes. The energy turned into heat, and the heat
was carried off in the air.
If it's a more modern electric or hybrid car, then the kinetic energy
spun the wheel motors, turning them temporarily into electrical
generators. The generators converted the kinetic energy into
electrical energy, which got put back into the car's batteries, and
could be used again. That's why electric cars use less gas.