0N. The net force acting on this firework is 0.
The key to solve this problem is using the net force formula based on the diagram shown in the image. Fnet = F1 + F2.....Fn.
Based on the free-body diagram, we have:
The force of gases is Fgases = 9,452N
The force of the rocket Frocket = -9452
Then, the net force acting is:
Fnet = Fgases + Frocket
Fnet = 9,452N - 9,452N = 0N
Answer:
Index of expansion: 4.93
Δu = -340.8 kJ/kg
q = 232.2 kJ/kg
Explanation:
The index of expansion is the relationship of pressures:
pi/pf
The ideal gas equation:
p1*v1/T1 = p2*v2/T2
p2 = p1*v1*T2/(T2*v2)
500 C = 773 K
20 C = 293 K
p2 = 35*0.1*773/(293*1.3) = 7.1 bar
The index of expansion then is 35/7.1 = 4.93
The variation of specific internal energy is:
Δu = Cv * Δt
Δu = 0.71 * (20 - 500) = -340.8 kJ/kg
The first law of thermodynamics
q = l + Δu
The work will be the expansion work
l = p2*v2 - p1*v1
35 bar = 3500000 Pa
7.1 bar = 710000 Pa
q = p2*v2 - p1*v1 + Δu
q = 710000*1.3 - 3500000*0.1 - 340800 = 232200 J/kg = 232.2 kJ/kg
Current is defined as the rate of charge flowing a point every second. Having a current of 1 Ampere signifies 1 Coulomb is flowing in a circuit every second. It is measured by the use of an ammeter which is positioned in series to the component to be measured. The current in the problem is calculated as follows:
I = 2.0 x 10^-4 C / 5.0 x 10^-5 s
<span>I = 4 A</span>
The momentum of ball is given by:
Since both have the same momentum, we have:
Number 3If you notice any mistake in my english, please let me know, because i am not native.
Answer:
a = 2 m/s²
Explanation:
average acceleration = change of velocity / change of time
a = Δv/Δt = (20 - 10) / 5 = 10/5 = 2