Answer:
A Type of Drink
Explanation:
A controlled variable remains constant throughout the experiment.
In such experiment, you'd test the volume of one single caffeinated drink. You'd have to use the same type of drink every trial.
We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
I have attached a photo of the structure.
You can get better at solving problems like this by practicing a lot!
Explanation:
On comparing blue visible light with red visible light, there is difference in the wavelength, frequency, and energy. The difference between both red and blue visible lights are as follows.
Blue visible light:
- It has low wavelength.
- High frequency.
- More energy.
Red visible light:
- It has high wavelength.
- Low frequency.
- Less energy.