Answer: option D.
The total number of atoms of each element on both sides of the
equation must be the same.
Explanation:
Answer:
Oxide of M is
and sulfate of 
Explanation:
0.303 L of molecular hydrogen gas measured at 17°C and 741 mmHg.
Let moles of hydrogen gas be n.
Temperature of the gas ,T= 17°C =290 K
Pressure of the gas ,P= 741 mmHg= 0.9633 atm
Volume occupied by gas , V = 0.303 L
Using an ideal gas equation:


Moles of hydrogen gas produced = 0.01225 mol

Moles of metal =
So, 8.3333 mol of metal M gives 0.01225 mol of hydrogen gas.

x = 2.9 ≈ 3


Formulas for the oxide and sulfate of M will be:
Oxide of M is
and sulfate of
.
Answer:
The volume of the gas is determined, which will allow you to calculate the temperature.
Explanation:
According to Charles law; the volume of a given mass of an ideal gas is directly proportional to its temperature at constant pressure.
This implies that, when the volume of an ideal gas is measured at constant pressure, the temperature of the ideal gas can be calculated from it according to Charles law.
Hence in the Ideal Gas Law lab, the temperature of an ideal gas is measured by determining the volume of the ideal gas.
Mass of H₂ needed to react with O₂ : 1.092 g
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
Reaction
O₂(g) + 2H₂(g) → 2H₂O(g)
mass of O₂ : 8.75 g
mol O₂(MW=32 g/mol) :

From the equation, mol ratio of O₂ : H₂ = 1 : 2, so mol H₂ :

Mass H₂ (MW=2 g/mol) :

Answer:
4.48 - 6.48
Explanation:
A pH indicator works in a better way in a range of pH = pKa ± 1. That means we need to determine the pKa of the indicator propyl red to find the range over which it change its color. That is:
pKa = -log Ka
pKa = -log 3.3x10⁻⁶
pKa = 5.48
That means the range over propyl red will change from yellow to red or vice versa is:
4.48 - 6.48