<u>Answer:</u> The number of
ions dissociated are
<u>Explanation:</u>
We are given:
pH = 2.07
Calculating the value of pOH by using equation, we get:

To calculate hydroxide ion concentration, we use the equation to calculate pOH of the solution, which is:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
pOH = 11.93
Putting values in above equation, we get:
![11.93=-\log[OH^-]](https://tex.z-dn.net/?f=11.93%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=10^{-11.93}=1.17\times 10^{-12}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-11.93%7D%3D1.17%5Ctimes%2010%5E%7B-12%7DM)
To calculate the number of moles for given molarity, we use the equation:

Molarity of solution = 
Volume of solution = 1243 mL = 1.243 L (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

According to mole concept:
1 mole of a compound contains
number of particles
So,
number of
will contain =
number of ions
Hence, the number of
ions dissociated are
Answer:
a) nitrogen
b) nitrogen =5
Oxygen = 6
Fluorine =7
Explanation:
Usually, if we have two or more elements in a compound, the central atom in the compound is the atom having the least value of electro negativity.
If we consider fluorine, oxygen and nitrogen; nitrogen is the least electronegative of the trio hence it should be the central atom of the triatomic molecule.
The number of valence electrons on the valence shell of each atom is shown below;
nitrogen =5
Oxygen = 6
Fluorine =7
Answer:
b molartiary will decrease
Explanation
<h2>Answer with explanation </h2>
<h3><em>The starting diol for this molecule is :-</em></h3><h3><em>The starting diol for this molecule is :-D) ethan-1,2-diol.</em></h3>
<em>Hope </em><em>my </em><em>answer </em><em>is</em><em> helpful</em><em> to</em><em> you</em><em> </em><em>☺️</em>