1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
2 years ago
15

These two magnets are held close together, as shown. What directions will they move once released?

Physics
1 answer:
frozen [14]2 years ago
3 0
I think the magnets will move towards each other due to the opposite poles being attracted to each other
You might be interested in
Which equation can be used to calculate the normal force on an object if you know the speed of the object, the coefficient of ki
tino4ka555 [31]

Answer:

D

Explanation:

The friction force is the weight force times the coefficient of friction. So diving by the coefficient gives you the weight force which is equivalent to the normal force.

3 0
1 year ago
Instantaneous speed is measured
VMariaS [17]

Answer:

C. At a particular instant

Explanation:

Speed is the defined as the ratio between the distance covered by an object and the time taken:

v=\frac{d}{t}

where d is the distance and t the time.

However, there are two possible measurements of speed:

- Average speed: this is the speed measured over a non-zero time interval (for example: a car moving 100 metres in 5 seconds; its average speed is

v=\frac{100 m}{5 s}=20 m/s

- Instantaneous speed: this is the speed of an object measured at a particular instant in time, so for a time interval that tends to zero. So, in the previous example, the average speed is 20 m/s but the instantaneous speed of the car at various instants of time can be different from that value.

7 0
3 years ago
A solid cylinder of mass M = 45 kg, radius R = 0.44 m and uniform density is pivoted on a frictionless axle coaxial with its sym
user100 [1]

Answer:

w_f = 1.0345 rad/s

Explanation:

Given:

- The mass of the solid cylinder M = 45 kg

- Radius of the cylinder R = 0.44 m

- The mass of the particle m = 3.6 kg

- The initial speed of cylinder w_i = 0 rad/s

- The initial speed of particle V_pi = 3.3 m/s

- Mass moment of inertia of cylinder I_c = 0.5*M*R^2

- Mass moment of inertia of a particle around an axis I_p = mR^2

Find:

- What is the magnitude of its angular velocity after the collision?

Solution:

- Consider the mass and the cylinder as a system. We will apply the conservation of angular momentum on the system.

                                     L_i = L_f

- Initially, the particle is at edge at a distance R from center of cylinder axis with a velocity V_pi = 3.3 m/s contributing to the initial angular momentum of the system by:

                                    L_(p,i) = m*V_pi*R

                                    L_(p,i) = 3.6*3.3*0.44

                                    L_(p,i) = 5.2272 kgm^2 /s

- While the cylinder was initially stationary w_i = 0:

                                    L_(c,i) = I*w_i

                                    L_(c,i) = 0.5*M*R^2*0

                                    L_(c,i) = 0 kgm^2 /s

The initial momentum of the system is L_i:

                                    L_i = L_(p,i) + L_(c,i)

                                    L_i = 5.2272 + 0

                                    L_i = 5.2272 kg-m^2/s

- After, the particle attaches itself to the cylinder, the mass and its distribution around the axis has been disturbed - requires an equivalent Inertia for the entire one body I_equivalent. The final angular momentum of the particle is as follows:

                                   L_(p,f) = I_p*w_f

- Similarly, for the cylinder:

                                   L_(c,f) = I_c*w_f

- Note, the final angular velocity w_f are same for both particle and cylinder. Every particle on a singular incompressible (rigid) body rotates at the same angular velocity around a fixed axis.

                                  L_f = L_(p,f) + L_(c,f)

                                  L_f = I_p*w_f + I_c*w_f

                                  L_f = w_f*(I_p + I_c)

-Where, I_p + I_c is the new inertia for the entire body = I_equivalent that we discussed above. This could have been determined by the superposition principle as long as the axis of rotations are same for individual bodies or parallel axis theorem would have been applied for dissimilar axes.

                                  L_i = L_f

                                  5.2272 = w_f*(I_p + I_c)

                                  w_f =  5.2272/ R^2*(m + 0.5M)

Plug in values:

                                  w_f =  5.2272/ 0.44^2*(3.6 + 0.5*45)

                                  w_f =  5.2272/ 5.05296

                                  w_f = 1.0345 rad/s

5 0
2 years ago
He does whatever a spider can. Spider-Man, who has a mass of 76 [kg], is clinging onto an inclined wall forming an inclination a
Aliun [14]

Answer:570.54 N

Explanation:

Given

mass of man=76 kg

\theta =50^{\circ}

As man is standing over inclined building therefore

its weight has two components i.e. sin and cos component

Force perpendicular to inclined wall

F=mgcos\theta =76\times 9.8\times \sin 50

F=570.54 N

4 0
3 years ago
Does displacement = Δx?
Volgvan
Typically no. Displacement can be in multiple directions as a vector. of something is traveling only along x, then it would be true though this is usually not the case.
8 0
3 years ago
Read 2 more answers
Other questions:
  • All digits shown on the measuring device, plus one estimated digit, are considered _______.
    14·2 answers
  • Your window thermometer shows that the temperature outdoors is 89.3°f. how should you report this temperature to your friend in
    8·1 answer
  • A student submerges an irregularly object in a graduated cylinder half filled with water. The level of the water in the cylinder
    15·1 answer
  • A 50 mL graduated cylinder contains 25.0 mL of water. A 42.5040 g piece of gold is placed in the graduated cylinder and the wate
    6·1 answer
  • A vaulter holds a 26.90-N pole in equilibrium by exerting an upward force U with her leading hand and a downward force D with he
    7·2 answers
  • Two campers dock a canoe. One camper has a mass of 100.0 kg and moves forward at 3.0 m/s as he leaves the canoe to step onto the
    15·1 answer
  • An athlete whirls a 8.00 kg hammer m from the axis of rotation in a horizontal circle, as shown in the figure below . The hammer
    8·1 answer
  • Need help please and thank​
    6·2 answers
  •  A car accelerates from 0 m/s to 25 m/s in 5 seconds. What is the average acceleration of the car.​
    8·1 answer
  • What is meant by the phrase "a consistent method of measurement"?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!