Answer: 100 m/s^2
F=ma
Explanation:
50N = 50 kg*m/s^2
500g = 0.5 kg
F=ma
a = F/m
a = (50 kg*m/s^2)/(0.5 kg)
a = 100 m/s^2
The speed of an object can be determined from the distance vs time graph.
You know that speed = distance/time
in the graph, distance/time = slope of the curve.
So SPEED IS GIVEN BY THE SLOPE of the curve in the graph.
● If the distance vs time curve is a straight line, parallel to time axis(x-axis), slope is 0. That means speed is 0. So the object is at rest.
● If the distance vs time curve is a straight line, with some non-zero slope; That means speed is nonzero and constant. So the object is in uniform motion.
● If the distance vs time curve is a curved, the slope is changing. That means speed is changing. So the object is in an accelerated motion.
Figure A shows cross section of a land form or rock. In Figure B, compression stress is applied on it. When compression stresses are applied on a rock, it squeezes the rock cause fold or fracture. The fault formed by compression stress is called thrust fault. If the compression stresses/ force continue to act on a rock it will converge and form thrust fault. In Figure C, tension stresses is applied on the rock. When a tension stress applied on a rock it deforms/ lengthen. There are three type of deformations occur due to tension stresses. One is elastic deformation, in which, rock retains it original shape when force/stresses are removed. Second is plastic deformation, in which rock lengthen and change occur permanently. Third type of deformation is result into fracture or breaking of rock. In Figure C, shear stresses are applied on rock. Shear stresses are applied with equal magnitude but in opposite direction. It cause breaking of rock.
Answer:
Explanation:
The region around a charged particle where another charged particle experiences a force of attraction or repulsion is called electric field.
The strength of electric field is defined as the force experienced by the unit positive test charge.
E = F / q
Electric field strength is a vector quantity and it is measured in newton per coulomb.
Where, F is the force of attraction or repulsion between the two charges and q is the test charge on which the electric field strength is to be calculated.
The strength of electric field is more if the field is strong. It means more be the electric field strength at a point more be the electric field.