Answer:
a. blue, b. red, c. red, d. basic - blue
Explanation:
a.washing powder ( containing sodium carbonate ) basic -blue
b. orange juice ( containing citric acid )- acidic -red
c. lemonade ( containing H2CO₃ )-acidic - red
d. cleaner ( containg NH₃ )- basic - blue
Answer:
An oxidizing agent, or oxidant, gains electrons and is reduced in a chemical reaction. ... A reducing agent is oxidized, because it loses electrons in the redox reaction.
Explanation:
An oxidizing agent, or oxidant, gains electrons and is reduced in a chemical reaction. ... A reducing agent is oxidized, because it loses electrons in the redox reaction.
Answer:
1.64x10⁻¹⁸ J
Explanation:
By the Bohr model, the electrons surround the nucleus of the atom in shells or levels of energy. Each one has it's energy, and the electron doesn't fall to the nucleus because it can reach another level of energy, and then return to its level.
When the electrons go to another level, it absorbs energy, and then, when return, this energy is released, as a photon (generally as luminous energy). The value of the energy can be calculated by:
E = hc/λ
Where h is the Planck constant (6.626x10⁻³⁴ J.s), c is the light speed (3.00x10⁸ m/s), and λ is the wavelength of the photon.
The wavelength can be calculated by:
1/λ = R*(1/nf² - 1/ni²)
Where R is the Rydberg constant (1.097x10⁷ m⁻¹), nf is the final orbit, and ni the initial orbit. So:
1/λ = 1.097x10⁷ *(1/1² - 1/2²)
1/λ = 8.227x10⁶
λ = 1.215x10⁻⁷ m
So, the energy is:
E = (6.626x10⁻³⁴ * 3.00x10⁸)/(1.215x10⁻⁷)
E = 1.64x10⁻¹⁸ J
Answer:

Explanation:
Hello,
In this case, for a concentration of 0.42 M of benzoic acid whose Ka is 6.3x10⁻⁵ in 0.33 M sodium benzoate, we use the Henderson-Hasselbach equation to compute the required pH:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the concentration of the base is 0.33 M and the concentration of the acid is 0.42 M, thereby, we obtain:
![pH=-log(Ka)+log(\frac{[base]}{[acid]} )\\\\pH=-log(6.3x10^{-5})+log(\frac{0.33M}{0.42M} )\\\\pH=4.1](https://tex.z-dn.net/?f=pH%3D-log%28Ka%29%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5CpH%3D-log%286.3x10%5E%7B-5%7D%29%2Blog%28%5Cfrac%7B0.33M%7D%7B0.42M%7D%20%29%5C%5C%5C%5CpH%3D4.1)
Regards.