Answer: Because temperature is a measure of the average kinetic energy of the atoms or molecules in the system. The zeroth law of thermodynamics says that no heat is transferred between two objects in thermal equilibrium; therefore, they are the same temperature.
Explanation:9 (- _ -)
The type of eclipse in which one sees the sun in the form of a ring is ANNULAR SOLAR ECLIPSE.
Solar eclipse occurs when the moon casts a shadow on the earth.
There are three basic types of solar eclipse, these are total, partial and annular solar eclipse. The annular solar eclipse occurs when the moon covers the sun's center thereby leaving the sun visible outer edges to form a ring of fire around the moon.<span />
Answer:
8) 709.8875 J
9) The object is at 7.24375 m from the ground
10) Kinetic energy increases as the object falls.
Explanation:
We use the expression for the displacement h(t) as a function of time of an object experiencing free fall:
h(t) = hi - (g/2) t^2
hi being the initial position of the object (10m) above ground, g the acceleration of gravity (9.8 m/s^2), and t the time (in our case 0.75 seconds):
h(0.75) = 10 - 4/9 (0.75)^2 = 7.24375 m
This is the position of the 10 kg object after 0.75 seconds (answer for part 9)
Knowing this position we can calculate the potential energy of the object when it is at this height, using the formula:
U = m g h = 10kg * 9.8 (m/s^2) * 7.24375 m = 709.8875 J (answer for part 8)
Part 10)
the kinetic energy of the object increases as it gets closer to ground, since its velocity is increasing in magnitude because is being accelerated in its motion downwards.
Axis labels. We don’t know what is being compared with the data
Answer:
10 m/s²
Explanation:
Acceleration: This the rate of change of velocity. The unit of acceleration is m/s²
From the question,
a = (v-u)/t.................... Equation 1
Where a = acceleration of the cheetah, v = final velocity of the cheetah, u = initial velocity of the cheetah, t = time.
Given: u = 0 m/s, v = 25 m/s, t = 2.5 s.
Substitute these values into equation 1
a = (25-0)/2.5
a = 25/2.5
a = 10 m/s²
Hence the acceleration of the cheetah = 10 m/s²