A ship maneuvers to within 2500 m of an island's 1800 m high mountain peak and fires a projectile at an enemy ship 610 m on the
other side of the peak, as illustrated in Figure 3-29. If the ship shoots the projectile with an initial velocity of v = 248 m/s at an angle of θ = 74°, how close to the enemy ship does the projectile land?
<span>273 K is the freezing point of water and it is equal to 0 degrees Celcius ,In this change ,heat is released so as to gain the suitable temperature for freezing.273 K is just the Celsius scale but with being 0 but the same scale ,this number was arrived at because temperature comes from the motion of a substance's particles.</span>
The magnitude of the force on positive charges will be and the magnitude of the force on the negative charge is .
Explanation:
Given:
The value of the charges, .
The length of each side of the triangle, .
Consider a equilateral triangle , as shown in the figure. Let two point charges of magnitude are situated at points and and another point charge is situated at point .
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
Substitute for , for and for in equation (1), we have
Substitute for , for and for in equation (2), we have
Substitute for , for and for in equation (3), we have