Answer:
3.1 m/s
Explanation:
The total distance she has to run is the addition of the three lengths:
47 + 63 + 76 = 186 meters.
She needs to cover it one minute (60 seconds). Therefore her speed must be:
186 m / 60 s = 3.1 m/s
Complete Question
A person throws a pumpkin at a horizontal speed of 4.0 m/s off a cliff. The pumpkin travels 9.5m horizontally before it hits the ground. We can ignore air resistance.What is the pumpkin's vertical displacement during the throw? What is the pumpkin's vertical velocity when it hits the ground?
Answer:
The pumpkin's vertical displacement is 
The pumpkin's vertical velocity when it hits the ground is 
Explanation:
From the question we are told that
The horizontal speed is 
The horizontal distance traveled is 
The horizontal distance traveled is mathematically represented as

Where t is the time taken
substituting values

=> 

Now the vertical displacement is mathematically represented as

now the vertical velocity before the throw is zero
So


Now the final vertical velocity is mathematically represented as

substituting values


Answer:
Oooo someone is writing a answer. (Also im new to this so Idk what to really do.)
Explanation:
The amount of energy before and after any energy transformations remain the same because energy cannot be created or destroyed. From the law conservation of energy; any time energy is transferred between two objects, or converted from one form into another, no energy is created and none is destroyed. The total amount of energy involved in the process remains the same.
You have no options here so I'll just answer. It can cause a rise in heart rate and greatly increases the risk of overheating and even death. If you grab the rabbit too hard, you risk breaking/fracturing a bone or causing other kinds of damage, whether externally or internally, to the rabbit.