Σ/ε
σ = F/A
ε = ΔL/L
F = force
A = area
L = lenght
ΔL = |old lenght - new lenght|
well it depends on the wind and gravity and the side the chickens on and the amount of force but if its a simple question then it doesnt roll at all or it rolls forward
Answer:
w = vR/3
Explanation:
The centre of mass of the loop to bullet system is given by D / 4 from centre of loop, which is equivalent to R / 2 from its centre.
From the principle of conservation of linear momentum
, we have
m*v = 2*m* Vcm
Where v = velocity of bullet, Vcm = velocity of wood
Hence, we have
Vcm = v2
Also, from the conservation of angular momentum about the centre of mass.
M*V*(R/2) = Ic*w - equation (I)
where Ic = moment of inertia and w = angular velocity
Ic for a ring is given by
Ic of a bullet is given by
Hence, the moment of inertia of the system is given by the summation of the two moments of inertia Ic(ring) + Ic(bullet) which gives
Ic(system) =
Substituting back into equation (I), we have
Hence, we obtain w =vR/3
w=v3R
Answer:
The kinetic energy of bocce ball is more.
Explanation:
Given that,
Mass of a bowling ball, m₁ = 4 kg
Speed of the bowling ball, v₁ = 1 m/s
Mass of bocce ball, m₂ = 1 kg
Speed of bocce ball, v₂ = 4 m/s
We need to say which has more kinetic energy.
The kinetic energy of an object is given by :
Kinetic energy of the bowling ball,
The kinetic energy of the bocce ball,
So, the kinetic energy of bocce ball is more than that of bowling ball.