Answer:
L' = 555.95 lb
Explanation:
Analyzing the given conditions in the question, we get
The safe load, L is directly proportional to width (w) and square of depth (d²)
also,
L is inversely proportional length (l) i.e L = k/l
combining the above conditions, we get an equation as:
L = k(wd²/l)
now, for the first case we have been given
w = 3 in
d = 6 in
l = 11 ft
L = 1213 lbs
thus,
1213 lb = k ((3 × 6²)/11)
or
k = 123.54 lbs/(ft.in³)
Now,
Using the calculated value of k to calculate the value of L in the second case
in the second case, we have
w = 6 in
d =3 in
l = 12 ft
Final Safe load L' = 123.54 × (6 × 3²/12)
or
L' = 555.95 lb
Answer:
6 meters away
Explanation:
6*1.4= 8.4 which is pretty close
Answer:
The answer would be drug use, addiction, dependence, tolerance, and withdrawal.
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.
