A "heating curve" is a graph that shows the temperature of the substance
against the amount of heat you put into it.
For most of the graph, as you'd expect, the temperature goes up as you
add heat, and it goes down as you take heat away. BUT ... While the
substance is changing state, its temperature doesn't change even though
you're putting heat in or taking heat out.
So that part of the graph is a horizontal line.
Answer:
0.0321 g
Explanation:
Let helium specific heat 
Assuming no energy is lost in the process, by the law of energy conservation we can state that the 20J work done is from the heat transfer to heat it up from 273K to 393K, which is a difference of ΔT = 393 - 273 = 120 K. We have the following heat transfer equation:

where
is the mass of helium, which we are looking for:

25 x 10^-5
= 0.00025
25 cm
= 0.00025 km
Answer:
v = -1.8t+36
20 seconds
360 m
40 seconds
36 m/s
The object speed will increase when it is coming down from its highest height.
Explanation:

Differentiating with respect to time we get

a) Velocity of the object after t seconds is v = -1.8t+36
At the highest point v will be 0

b) The object will reach the highest point after 20 seconds

c) Highest point the object will reach is 360 m


d) Time taken to strike the ground would be 20+20 = 40 seconds
![[tex]v=u+at\\\Rightarrow v=0+0.9\times 2\times 20\\\Rightarrow v=36\ m/s](https://tex.z-dn.net/?f=%5Btex%5Dv%3Du%2Bat%5C%5C%5CRightarrow%20v%3D0%2B0.9%5Ctimes%202%5Ctimes%2020%5C%5C%5CRightarrow%20v%3D36%5C%20m%2Fs)
Acceleration will be taken as positive because the object is going down. Hence, the sign changes. 2 is multiplied because the expression is given in the form of 
e) The velocity with which the object strikes the ground will be 36 m/s
f) The speed will increase when the object has gone up and for 20 seconds and falls down for 20 seconds. The object speed will increase when it is coming down from its highest height.
The answer is: " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V ; That is, "mass divided by volume" ;
Density is expressed as:
__________________________________________
"mass per unit volume"; in which the "mass" is expressed in units of "g" ("grams") ; and the "unit volume" is expressed in units of:
"cm³ " or "mL";
_____________________________________________
{Note the exact equivalent: 1 cm³ = 1 mL }.
____________________________________________
→ The formula is: " D = m / V " ;
___________________________________________
in which:
"D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given);
"m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
"V" refers to the "volume", in units of "cm³ " ;
which is: "23.4 cm³ " (given);
_________________________________________________
We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________
D = m / V ;
_________________________________________________________
And we rearrange; to isolate "m" (mass) on ONE side of the equation; and then we plug in our known/given values;
to solve for "m" (mass); in units of "g" (grams) ;
___________________________________________________
Multiply each side of the equation by "V" ;
____________________________________________________
V * { D = m / V } ; to get:
____________________________________________________
V * D = m ; ↔ m = V * D ;
___________________________________________________
Now, we plug in the given values for "V" (volume) and "D" (density) ; to solve for the mass, "m" ;
______________________________________________________
m = V * D ;
m = (23.4 cm³) * (8.9 g / 1 cm³) = (23.4 * 8.9) g = 208.26 g ;
→ Round to "208 g" (3 significant figures);
____________________________________
The answer is: " 208 g " .
_____________________________________________________