Hello~
Ice is harder than liquid water because<span> the molecules of ice are linked more tightly together than the molecules of liquid water.
Hope this helps! </span>
Answer:
-30 N/C
Explanation:
Since the potential changes from 0.90 V to 1.2 V when I move the probe 1 cm closer to the non-grounded electrode, the electric field is the gradient between the two points is given by E = -ΔV/Δx where ΔV = change in electric potential and Δx = distance of potential change = 1 cm = 0.01 m
Now ΔV = final potential - initial potential = 1.2 V - 0.90 V = 0.30 V
Since E = -ΔV/Δx
substituting the values of the variables into the equation, we have
E = -ΔV/Δx
E = -0.30 V/0.01 m
E = -30 V/m
Since 1 V/m = 1 N/C.
E = -30 N/C
So, the average electric field is -30 N/C
Please be determined and being hardworking person do not rely on the other people to make your problems solved
Explanation:
Ok?
gravitational potential is directly proportional to the height of the object relative to a reference line and is given as
PE = mgh
where m = mass of object , g = acceleration due to
gravity and h = height of the object above the reference line .
as the skydiver falls , its height above the ground decrease and hence the gravitational potential energy of the skydiver decrease.
as per conservation of energy , total energy of the skydiver must remain constant all the time . hence the decrease in potential energy appears as increase in kinetic energy by same amount to keep the total energy constant
KE + PE = Total energy
so as the skydiver falls , it gains speed and hence the kinetic energy of skydiver increase since kinetic energy is directly proportional to the square of the speed.
when the parachute opens, the skydiver experience force in upward which tries to balance the weight of the skydiver. hence the speed of the skydiver decrease until upward force becomes equal to the downward force. hence the kinetic energy decrease just after the parachute opens
Let s = rate of rotation
<span>Let r = radius of earth = 6,400km </span>
<span>Then solving (s^2) r = g will give the desired rate, from which length of day is inferred. </span>
<span>People would not be thrown off. They would simply move eastward in a straight line while the curved surface of earth fell away from beneath them.</span>