We first calculate the acceleration on the ball using:
2as = v² - u²; u = 0 because ball is initially at rest
a = (36)²/(2 x 0.35)
a = 1850 m/s²
F = ma
F = 0.058 x 1850
= 107.3 Newtons
It is important for physicians to be Respectful of patient use of alternative therapies
Alternative therapies usually have not gain a scientific approval from the scientific community, but there are some therapies that show positive results even though it is still has not proved by studies or researches. So it's important for physicians to be respectful if the patient choose to do it
Answer: 6,400 km
Explanation:
The weight of a person is given by:

where m is the mass of the person and g is the acceleration due to gravity. While the mass does not depend on the height above the surface, the value of g does, following the formula:

where
G is the gravitational constant
M is the Earth's mass
r is the distance of the person from the Earth's center
The problem says that the person weighs 800 N at the Earth's surface, so when r=R (Earth's radius):
(1)
Now we want to find the height h above the surface at which the weight of the man is 200 N:
(2)
If we divide eq.(1) by eq.(2), we get


By solving the equation, we find:

which has two solutions:
--> negative solution, we can ignore it
--> this is our solution
Since the Earth's radius is
, the person should be at
above Earth's surface.
Here, We know, Density = Mass / Volume
Here, mass = 249.8 g
volume = 92.5 cm³
Substitute their values,
d = 249.8 / 92.5
d = 2.7 g/cm³
In short, Your Answer would be "Aluminum"
Hope this helps!
Explanation:
It is given that,
Wavelength of x-rays = 2 nm
Plane spacing, d = 0.281 nm
It is assumed to find the scattering angle for second order maxima.
For 2nd order, Bragg's law is given by :

For second order, n = 2

Here, θ is not defined. Also, the wavelength of x-rays is more than the plane spacing. It means that it cannot produce any diffraction maximum.