Answer:
es un motor de combustión interna con encendido por chispa.
Answer: 1.14 N
Explanation :
As any body submerged in a fluid, it receives an upward force equal to the weight of the fluid removed by the body, which can be expressed as follows:
Fb = δair . Vb . g = 1.29 kg/m3 . 4/3 π (0.294)3 m3. 9.8 m/s2
Fb = 1.34 N
In the downward direction, we have 2 external forces acting upon the balloon: gravity and the tension in the line, which sum must be equal to the buoyant force, as the balloon is at rest.
We can get the gravity force as follows:
Fg = (mb +mhe) g
The mass of helium can be calculated as the product of the density of the helium times the volume of the balloon (assumed to be a perfect sphere), as follows:
MHe = δHe . 4/3 π (0.294)3 m3 = 0.019 kg
Fg = (0.012 kg + 0.019 kg) . 9.8 m/s2 = 0.2 N
Equating both sides of Newton´s 2nd Law in the vertical direction:
T + Fg = Fb
T = Fb – Fg = 1.34 N – 0.2 N = 1.14 N
BALANCED FORCES
When two forces acting on an object are equal in size but act in opposite directions, we say that they are balanced forces . a stationary object stays still. ... a moving object continues to move at the same speed and in the same direction.
- <em>BRAINLIEST answerer</em>
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Let’s say you have a spring. You press on the spring with your finger. The spring goes down. This is the action force. Then, the spring goes back up after you take your finger off of it. This is known as the reaction force.