Answer:
1.63366
Explanation:
I got this answer from calculator soups physics calculators. I really recommend their website for formulas.
Answer:
A spring whose spring constant is 200 lbf/in has an initial force of 100 lbf acting on it. Determine the work, in Btu, required to compress it another 1 inch.
Step 1 of 4
The force at any point during the deflection of the spring is given by,
where is the initial force
and x is the deflection as measured from the point where the initial force occurred.
The work required to compress the spring is
Therefore work required to compress the spring is
The work required to compress the spring in Btu is calculated by
Where 1Btu =778
The work required to compress the spring,
eman Asked on February 19, 2018 in thermal fluid Sciences 4th solutions.
Explanation:
Remember, half of the energy in an EM wave is in the E field, the rest is in the B field.
Thus, multiply E field energy by 2.
To calculate the energy of the wave you must then use the following equation: W = A*t*c*2*(1/2*E^2*Eo). Where, A = Area, t = time, c = speed of light (which is a constant), E = Electric field, E0 = vacuum permittivity (8.85*10^-12 Nm^2/C^2). Substituting W =(0.320)*(26)*(3*10^8)*(2)*((1/2)*(1.95*10^-2)^2*(8.854*10^-12)) = 8.40*10^-6 J
Since there is no temperature change which drives heat flow, thus no heat will be released by the water.
<h3>
Heat released by the water when it freezes</h3>
The heat released by the water when it freezes is calculated as follows;
Q = mcΔФ
where;
- m is mass of water
- c is specific heat capacity of water
- ΔФ is change in temperature = Фf - Фi
when water freezes, the temperature, Фf = 0 °C
Q = 82 x 4200 x (0 - 0)
Q = 0
Since there is no temperature change which drives heat flow, thus no heat will be released by the water.
Learn more about heat flow here: brainly.com/question/14437874