1 is irr 2 is rat 3 rat 4 rat 5 irr and 6 is irr
Answer:
A. (0, -2) and (4, 1)
B. Slope (m) = ¾
C. y - 1 = ¾(x - 4)
D. y = ¾x - 2
E. -¾x + y = -2
Step-by-step explanation:
A. Two points on the line from the graph are: (0, -2) and (4, 1)
B. The slope can be calculated using two points, (0, -2) and (4, 1):

Slope (m) = ¾
C. Equation in point-slope form is represented as y - b = m(x - a). Where,
(a, b) = any point on the graph.
m = slope.
Substitute (a, b) = (4, 1), and m = ¾ into the point-slope equation, y - b = m(x - a).
Thus:
y - 1 = ¾(x - 4)
D. Equation in slope-intercept form, can be written as y = mx + b.
Thus, using the equation in (C), rewrite to get the equation in slope-intercept form.
y - 1 = ¾(x - 4)
4(y - 1) = 3(x - 4)
4y - 4 = 3x - 12
4y = 3x - 12 + 4
4y = 3x - 8
y = ¾x - 8/4
y = ¾x - 2
E. Convert the equation in (D) to standard form:
y = ¾x - 2
-¾x + y = -2
<span>the highest point; the top or apex.<span>
<span>"a line drawn from the vertex of the figure to the base"
</span></span>GEOMETRYeach angular point of a polygon, polyhedron, or other figure.</span>
Answer:
I think this answer is 12.5
Given 2.50x + 3.50y < 30.
Where x represent the number of hamburgers and y represent the number of cheeseburgers.
Now question is to find the maximum value of hamburgers Ben could have sold when he has sold 4 cheeseburgers.
So, first step is to plug in y=4 in the given inequality. So,
2.50x+3.50(4)<30
2.50x+14 <30
2.50x<30- 14 Subtracting 14 from each sides.
2.50x< 16
Dividing each sides by 2.50.
x<6.4
Now x being number of hamburgers must be an integer , so tha maximum value of x can be 6,
thus x = 6 hamburgers
So, the maximum value of hamburgers Ben could have sold is 6*2.5=$15
Hope this helps!!