1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balandron [24]
3 years ago
7

(see image for question)

Mathematics
1 answer:
almond37 [142]3 years ago
4 0

Answer:

Hans has done a mistake in the second step.

The correct answer is:

5x^2+13x-6=0

5x^2+15x-2x-6x=0 - 5. -6=-30 -30=15. -2

5x(1+3x)-2x(1+3x)=0

(5x-2x)(1+3x)=0

5-2x=0 1+3x=0

x=5/2 x=-1/3

You might be interested in
What is the horizontal asymptote for y(t) for the differential equation dy dt equals the product of 2 times y and the quantity 1
marta [7]
First, we need to solve the differential equation.
\frac{d}{dt}\left(y\right)=2y\left(1-\frac{y}{8}\right)
This a separable ODE. We can rewrite it like this:
-\frac{4}{y^2-8y}{dy}=dt
Now we integrate both sides.
\int \:-\frac{4}{y^2-8y}dy=\int \:dt
We get:
\frac{1}{2}\ln \left|\frac{y-4}{4}+1\right|-\frac{1}{2}\ln \left|\frac{y-4}{4}-1\right|=t+c_1
When we solve for y we get our solution:
y=\frac{8e^{c_1+2t}}{e^{c_1+2t}-1}
To find out if we have any horizontal asymptotes we must find the limits as x goes to infinity and minus infinity. 
It is easy to see that when x goes to minus infinity our function goes to zero.
When x goes to plus infinity we have the following:
$$\lim_{x\to\infty} f(x)$$=y=\frac{8e^{c_1+\infty}}{e^{c_1+\infty}-1} = 8
When you are calculating limits like this you always look at the fastest growing function in denominator and numerator and then act like they are constants. 
So our asymptote is at y=8.

3 0
3 years ago
2935.88 what is the value of digit 9
frez [133]
900 is the correct answer
6 0
3 years ago
Read 2 more answers
Is anyone able to see if there is a counterexample for the following argument in logic?
Colt1911 [192]

if A=B

B=/=C

No A=C

All C are not A

6 0
3 years ago
Here are two rectangles.
Sophie [7]

Answer:

AB=9.5\ cm

Step-by-step explanation:

step 1

Find the length side PQ

we know that

The area of rectangle PQRS is given by

A=(PQ)(QR)

A=66\ cm^2

so

66=(PQ)(QR)

substitute the value of QR

66=(PQ)(12)

solve for PQ

PQ=66/12\\PQ=5.5\ cm

step 2

Find the length side AB

we know that

The perimeter of rectangle ABCD is given by

P=2(AB+BC)

we have

P=30\ cm\\BC=PQ=5.5\ cm

substitute

30=2(AB+5.5)

solve for AB

15=AB+5.5\\AB=15-5.5\\AB=9.5\ cm

6 0
3 years ago
What is -10 degrees Celsius equal to in Fahrenheit
hjlf

the formula is f=(c*20)+30  so 14 degrees farhenhight

3 0
3 years ago
Other questions:
  • What is the expanded form of 3x(x+3)^2?
    14·1 answer
  • The entire collection of individuals about which information is sought is called a
    7·1 answer
  • Please help giving 10pts
    6·2 answers
  • PLEASE HELP ME ASAP WILL MARK THE BRAINLEST
    8·2 answers
  • Helpp, I need to determine the slope and y-intercept for each group. I need to write an equation for the graph in slope-intercep
    14·2 answers
  • What is the sum of the series
    8·1 answer
  • Dead line is tomorrow
    7·2 answers
  • Joe says that x
    15·1 answer
  • If A=−2x+8 and B=2x−4, find an expression that equals 2A+B in standard form.
    13·1 answer
  • Let S be the universal set, where:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!