Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
Using the given equation you get:
E = 1.99x10^-25 / 9.0x10^-6
Divide 1.99 by 9.0: 1.99/9.0 = 0.22
For the scientific notation, when dividing subtract the two exponents:
25 -6 = 19
So you now have 0.22 x 10^-19
Now you need to change the 0.22 to be in scientific notation form:
2.2 x 10^-20
The answer is B.
Speed equals distance divided by time, so 350 divided by 2.5 equals 140 kilometers per hour.
Well I can't see the following physical properties you talked about in the question.
Mass per unit volume ratio is called density.