Up until the moment the box starts to slip, the static friction is maximized with magnitude <em>f</em>, so that by Newton's second law,
• the net force acting on the box parallel to the ramp is
∑ <em>F</em> = <em>mg</em> sin(<em>α</em>) - <em>f</em> = 0
where <em>mg</em> sin(<em>α</em>) is the magnitude of the parallel component of the box's weight; and
• the net force acting perpendicular to the ramp is
∑ <em>F</em> = <em>n</em> - <em>mg</em> cos(<em>α</em>) = 0
where <em>n</em> is the magnitude of the normal force and <em>mg</em> cos(<em>α</em>) is the magnitude of the perpendicular component of weight.
From the second equation we have
<em>n</em> = <em>mg</em> cos(<em>α</em>)
and <em>f</em> = <em>µn</em> = <em>µmg</em> cos(<em>α</em>), where <em>µ</em> is the coefficient of static friction. Substituting these into the first equation gives us
<em>mg</em> sin(<em>α</em>) = <em>µmg</em> cos(<em>α</em>) ==> <em>µ</em> = tan(<em>α</em>) ==> <em>α</em> = arctan(0.35) ≈ 19.3°