You should put when you will leave, where you will be, and what time you will get back.
Answer:
Explanation:
- The expression for acceleration of the rolling body on an inclined plane is given as a = gsinФ/1 + k²/R²
- where Ф is the angle of inclination, R is the radius, k is the radius of gyration.
- The potential energy of the system is given as ; PE = mgh
- The potential energy will be constant for ring, cylinder, solid sphere, and hollow sphere.
- The total kinetic energy of the rolling body is ; KE = mv²/2 + Iw²/2
- Hence, the total kinetic energy of the ring, cylinder, solid sphere and hollow sphere will be constant.
2. The moment of inertia of the ring is given as ;
I = mR²
The moment of inertia of the ring is maximum and therefore reaches the bottom last.
Answer:
-26 m/s.
Explanation:
Hello,
In this case, since the vertical initial velocity is 26 m/s and the vertical final velocity is 0 m/s at P, we compute the time to reach P:

With which we compute the maximum height:

Therefore, the final velocity until the floor, assuming P as the starting point (Voy=0m/s), turns out:

Which is clearly negative since it the projectile is moving downwards the starting point.
Regards.
Answer:
1.1ohms
Explanation:
According to ohms law E = IR
If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5
I = 0.36A (This will be the load current).
Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.
Voltage drop = 2.2V - 1.8V = 0.4V
Then we calculate the internal resistance using ohms law.
According to the law, V = Ir
V= voltage drop
I is the load current
r = internal resistance
0.4 = 0.36r
r = 0.4/0.36
r = 1.1 ohms
Answer:
The micturition reflex can be voluntarily controlled by the relaxation of the external urethral sphincter.