Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s
The options are;
a. V2 equals 2V1.
b. V2 equals (V1)/2.
c. V2 equals V1.
d. V2 equals (V1)/4.
e. V2 equals 4V1.
Answer:
Option A: V2 equals 2V1
Explanation:
Since the flow is steady, then we can say;
mass flow rate at input = mass flow rate at output.
Formula for mass flow rate is;
m' = ρVA
Thus;
At input;
m'1 = ρ1•V1•A1
At output;
m'2 = ρ2•V2•A2
So, m'1 = m'2
Now, we are told that the density of the fluid decreases to half its initial value.
Thus; ρ2 = (ρ1)/2
Since m'1 = m'2, then;
ρ1•V1•A1 = (ρ1)/2•V2•A2
Now, the pipe is uniform and thus the cross section doesn't change. Thus;
A1 = A2
We now have;
ρ1•V1•A1 = (ρ1)/2•V2•A1
A1 and ρ1 will cancel out to give;
V1 = (V2)/2
Thus, V2 = 2V1
To solve this problem we will apply the concept related to the kinetic energy theorem. Said theorem states that the work done by the net force (sum of all forces) applied to a particle is equal to the change experienced by the kinetic energy of that particle. This is:
Here,
m = mass
v = Velocity
Our values are given as,
Replacing,
Therefore the mechanical energy lost due to friction acting on the runner is 907J