Answer:
have a component along the direction of motion that remains perpendicular to the direction of motion
Explanation:
In this exercise you are asked to enter which sentence is correct, let's start by writing Newton's second law.
circular movement
F = m a
a = v² / r
F = m v²/R
where the force is perpendicular to the velocity, all the force is used to change the direction of the velocity
in linear motion
F = m a
where the force is parallel to the acceleration of the body, the total force is used to change the modulus of the velocity
the correct answer is: have a component along the direction of motion that remains perpendicular to the direction of motion
The height risen by the hammer when the work were done is 10 m.
The given parameters;
- <em>Mass of the hammer, m = 8.0 kg</em>
- <em>Work done on the hammer, W = 780 J</em>
<em />
Apply work energy - theorem to determine the height risen by the hammer when the work is done on it;

Thus, the height risen by the hammer when the work were done is 10 m.
Learn more about work-energy theorem here: brainly.com/question/22236101
Answer:
t=0.0625s
Explanation:
F=number of swings/time taken
DATA
Frequency=4.0Hz
number of swings from Q to R
=1/4
time taken=?
Frequency=number of swings/time taken
make t the subject of the formula
t=n/f
substitute the given date
t=0.25/4.0
t=0.0625s
option A is collect
Answer:
Average speed, 
Explanation:
Given:
- Initial speed, u=40 cm/s
- final speed , v=20 cm/s
- Time taken, t=5 s
<u>First case</u>
Using equation of motion we have

Now using,

now putting the value of a in first equation we get

<u>Second case</u>
Acceleration
Time taken 
using equation of motion in one Dimension we have

Average speed is equal to total distance travelled per unit total time taken
