Answer:
t = 1.27 x 10⁹ s
Explanation:
First, we will find the volume of the wire:
Volume = V = AL
where,
A = Cross-sectional area of wire = πr² = π(1 cm)² = π(0.01 m)² = 3.14 x 10⁻⁴ m²
L = Length of wire = 150 km = 150000 m
Therefore,
V = 47.12 m³
Now, we will find the number of electrons in the wire:
No. of electrons = n = (Electrons per unit Volume)(V)
n = (8.43 x 10²⁸ electrons/m³)(47.12 m³)
n = 3.97 x 10³⁰ electrons
Now, we will use the formula of current to find out the time taken by each electron to cross the wire:
where,
t = time = ?
I = current = 500 A
q = total charge = (n)(chareg on one electron)
q = (3.97 x 10³⁰ electrons)(1.6 x 10⁻¹⁹ C/electron)
q = 6.36 x 10¹¹ C

Therefore,
<u>t = 1.27 x 10⁹ s</u>
Given
The y-component of vector K is

The magnitude of vector K is , K=8 cm
To find
The angle

Explanation
Resolving K along its y-component we have,

Conclusion
The angle made with the x-axis is
Answer:
2
1
2
1
3
1
Explanation:
I'm pretty sure these are right. you might want to go back and check the first and third, but the other 4 are right
You're talking about a <em>tornado</em>.
It's not so much the low pressure that's so dangerous in the center of a tornado. It's more a matter of the high winds that are <em>caused </em>by the low pressure.
Answer:
E = 440816.32 N/C
Explanation:
Given data:
Three point charge of charge equal to +3.0 micro coulomb
fourth point charge = - 3.0 micro coulomb
side of square = 0.50 m
N.m^2/c^2
Due to having equal charge on center of square, 2 charge produce equal electric field at center and other two also produce electric field at center of same value
So we have



[
[
]
plugging all value



E = 440816.32 N/C