Answer:
a = 1.72 m/s²
Explanation:
The given kinematic equation is the 2nd equation of motion. The equation is as follows:
xf = xi + (Vi)(t) + (1/2)(a)t²
where,
xf = the final position = 5000 m
xi = the initial position = 1000 m
Vi = the initial velocity = 15 m/s
t = the time taken = 60 s
a = acceleration = ?
Therefore,
5000 m = 1000 m + (15 m/s)(60 s) + (1/2)(a)(60 s)²
5000 m = 1000 m + 900 m + a(1800 s²)
5000 m = 1900 m + a(1800 s²)
5000 m - 1900 m = a(1800 s²)
a(1800 s²) = 3100 m
a = 3100 m/1800 s²
<u>a = 1.72 m/s²</u>
The power of a machine is the work/time ratio for that particular machine
Its the rate of doing work.
Let <em>F₁ </em>and <em>F₂</em> denote the two forces, and <em>R</em> the resultant force.
<em>F₁ </em>and <em>F₂</em> point perpendicularly to one another, so their dot product is
<em>F₁ </em>• <em>F₂</em> = 0
<em />
We're given that one of these vectors, say <em>F₁</em>, makes an angle with <em>R</em> of 30°, so that
<em>F₁</em> • <em>R</em> = ||<em>F₁</em>|| ||<em>R</em>|| cos(30°)
But we also have
<em>F₁</em> • <em>R</em> = <em>F₁ </em>• (<em>F₁ </em>+ <em>F₂</em>) = (<em>F₁ </em>• <em>F₁</em>) + (<em>F₁ </em>• <em>F₂</em>) = <em>F₁ </em>• <em>F₁ </em>=<em> </em>||<em>F₁</em>||²
So, knowing that ||<em>R</em>|| = 100 N, we get that
(100 N) ||<em>F₁</em>|| cos(30°) = ||<em>F₁</em>||²
(100 N) cos(30°) = ||<em>F₁</em>||
||<em>F₁</em>|| ≈ 86.6 N
(And the same would be true for <em>F₂</em>.)
Wooden desk it doesn’t conduct or absorb heat as much as metal or plastic
Rolling friction is less than sliding friction