The force applied on the spring to stretch it is 13.2 N.
Hooke's law is a law of elasticity discovered by the English scientist Robert Hooke in 1660 that states that the displacement or size of a deformation is directly proportional to the deforming force or load for relatively small deformations of an object. When the load is removed under these conditions, the object returns to its original shape and size.
According to Hooke's law, F = k*e
where F is the force on the spring
k is force constant
and e is extension
F = (110)*(0.12)
F = 13.2 N
For more information on Hooke's law, visit :
brainly.com/question/13348278
#SPJ4
What is a travelling wave and a standing wave? What are the differences between both of them?
Answer: First of all we have to understand that a traveling wave is an organized disturbance traveling with a well defined wave speed. On the other hand standing waves are the combination of period waves with their reflected waves creating double sided waves. The differences between them is that standing waves have nodes and antinodes while a traveling wave does not.
I hope it helps, Regards.
Explanation:
Light is clearly affected by gravity, just think about a black hole, but light supposedly has no mass and gravity only affects objects with mass. On the other hand, if light does have mass then doesn't mass become infinitely larger the closer to the speed of light an object travels.
Answer:
I am going to guess it shows that the balloon is going downwards because the speed of rise is in the negatives for the last 2.
The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

the specific heat capacity

the increase in temperature
In our problem, the mass of the water is m=750 g, the specific heat is

and the amount of heat supplied is

, so if we re-arrange the previous formula we find the increase in temperature of the water: