It's because of the position of tectonic plates.
Answer:
The initial velocity of the ball is 28.714 m/s
Explanation:
Given;
time of flight of the ball, t = 2.93 s
acceleration due to gravity, g = 9.8 m/s²
initial velocity of the ball, u = ?
The initial velocity of the ball is given by;
v = u + (-g)t
where;
v is the final speed of the ball at the given time, = 0
g is negative because of upward motion
0 = u -gt
u = gt
u = (9.8 x 2.93)
u = 28.714 m/s
Therefore, the initial velocity of the ball is 28.714 m/s
The distance between city a and city b is 833.345 miles.
We know that
1°=60'
The distance of city a from the initial ray is calculated as
x_a=3960*tan45.46°=4024.101 miles
The distance of city b from the initial ray is calculated as
x_b=3960*tan 38.86°=3190.75 miles
Now the distance between city a and b is equal to
4024.101-3190.75=833.345 miles
This is the vertical distance between the cities.
The answer is Solvent. The reason is in the wording, 'the substance that does the dissolving.' A solvent does the dissolving, a solute is something that can be dissolved.
According to the law of conservation of momentum:

m1 = mass of first object
m2 = mass of second object
v1 = Velocity of the first object before the collision
v2 = Velocity of the second object before the collision
v'1 = Velocity of the first object after the collision
v'2 = Velocity of the second object after the collision
Now how do you solve for the velocity of the second car after the collision? First thing you do is get your given and fill in what you know in the equation and solve for what you do not know.
m1 = 125 kg v1 = 12m/s v'1 = -12.5m/s
m2 = 235kg v2 = -13m/s v'2 = ?




Transpose everything on the side of the unknown to isolate the unknown. Do not forget to do the opposite operation.




The velocity of the 2nd car after the collision is
0.03m/s.