1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
3 years ago
13

How does plants react with no scratch?

Chemistry
1 answer:
Andreas93 [3]3 years ago
3 0

Answer:

You see, plants need energy to grow and grow and grow. They use energy from sunlight to make a simple sugar, glucose. Whenever the plant needs energy, it can chomp a little glucose off of the starch.

without energy it wont get energy/food so it will eventually die  

Explanation:

You might be interested in
Determine the mass of water in kg, if 4300 cal of energy is placed in water, resulting in a temperature change to 101.0 oC from
Airida [17]

Answer:

0.5059kg

Explanation:

The heat absorbed for the water is determined using the equation:7

Q = C×m×ΔT

<em>Where Q is heat absorbed (4300cal)</em>

<em>C is specific heat (1cal/g°C)</em>

<em>m is the mass in grams</em>

<em>ΔT is change in °C (101.0°C - 92.5°C = 8.5°C)</em>

<em />

Replacing:

4300cal = 1cal/g°C×m×8.5°C

505.9g = m

In kg, the mass of water is:

<h3>0.5059kg</h3>

<em />

6 0
3 years ago
The rapid movement of gases molecules can be explained because gases have ___ size particles and exert _____ attraction for othe
Marrrta [24]
The answers that fit the blanks are SMALL and LITTLE, respectively. The particles or molecules or fas are small which makes it loose and easily moves around, and these only exert little attraction for other gas particles. The answer for this would be option D.
5 0
3 years ago
Read 2 more answers
Which of the following is kept constant when using a bomb calorimeter?
trapecia [35]
Constant Volume Calorimetry, also know as bomb calorimetry, is used to measure the heat of a reaction while holding volume constant and resisting large amounts of pressure. Although these two aspects of bomb calorimetry make for accurate results, they also contribute to the difficulty of bomb calorimetry. In this module, the basic assembly of a bomb calorimeter will be addressed, as well as how bomb calorimetry relates to the heat of reaction and heat capacity and the calculations involved in regards to these two topics.

Introduction 

Calorimetry is used to measure quantities of heat, and can be used to determine the heat of a reaction through experiments. Usually a coffee-cup calorimeter is used since it is simpler than a bomb calorimeter, but to measure the heat evolved in a combustion reaction, constant volume or bomb calorimetry is ideal. A constant volume calorimeter is also more accurate than a coffee-cup calorimeter, but it is more difficult to use since it requires a well-built reaction container that is able to withstand large amounts of pressure changes that happen in many chemical reactions.

Most serious calorimetry carried out in research laboratories involves the determination of heats of combustion ΔHcombustion" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔHcombustionΔHcombustion, since these are essential to the determination of standard enthalpies of formation of the thousands of new compounds that are prepared and characterized each month. In a constant volume calorimeter, the system is sealed or isolated from its surroundings, and this accounts for why its volume is fixed and there is no volume-pressure work done. A bomb calorimeter structure consists of the following:

Steel bomb which contains the reactantsWater bath in which the bomb is submergedThermometerA motorized stirrerWire for ignition

is usually called a “bomb”, and the technique is known as bomb calorimetry

Another consequence of the constant-volume condition is that the heat released corresponds to qv , and thus to the internal energy change ΔUrather than to ΔH. The enthalpy change is calculated according to the formula

(1.1)ΔH=qv+ΔngRT" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: center; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; width: 10000em !important; position: relative;">ΔH=qv+ΔngRT(1.1)(1.1)ΔH=qv+ΔngRT

Δng" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔngΔng  is the change in the number of moles of gases in the reaction.

6 0
3 years ago
Part 1: What is the final volume in milliliters when 0.730 L of a 44.8 % (m/v) solution is diluted to 23.3 % (m/v)?
Andre45 [30]

part 1 : the final volume : 1.404 L

part 2 : the initial concentration : 4.06 M

<h3>Further explanation </h3>

Dilution is the process of adding a solvent to get a more dilute solution.

The moles(n) before and after dilution are the same.

Can be formulated :

M₁V₁=M₂V₂

M₁ = Molarity of the solution before dilution  

V₁ = volume of the solution before dilution  

M₂ = Molarity of the solution after dilution  

V₂ = Molarity volume of the solution after dilution

part 1 :

M₁=44.8%

V₁=0.73 L

M₂=23.3%

\tt V_2=\dfrac{M_1.V_1}{M_2}\\\\V_2=\dfrac{44.8\times 0.73}{23.3}\\\\V_2=1.404~L

part 2 :

V₁=739 ml=0.739 L

V₂=1.5 L

M₂=2

\tt M_1=\dfrac{M_2.V_2}{V_1}\\\\M_1=\dfrac{2\times 1.5}{0.739}\\\\M_1=4.06

6 0
3 years ago
The atoms, molecules, or compounds present at the start of a chemical reaction that participate in the reaction.
Art [367]
For the first one the answer is B. and the second one is D.
4 0
3 years ago
Read 2 more answers
Other questions:
  • Which is an example of a highly unstable isotope that is often used in fission reactions?
    15·2 answers
  • What do atoms form when they share electron pairs molecules isotopes elements?
    12·1 answer
  • What type of energy transformations take place in a windmills
    10·1 answer
  • What happens to earth materials when water flows over landforms?
    11·1 answer
  • The image shows the formation of a fault-block mountain.
    7·2 answers
  • HELP PLEASE. 50 points!
    10·2 answers
  • *LAST QUESTION , PLEASE HELP* Why does the land around an once active coal mine remain barren? a.) Empty coal mines are flooded
    5·1 answer
  • Copper roofs on houses form patina (copper carbonates) over the course of years due to the reaction with oxygen, carbon dioxide
    13·1 answer
  • Can someone please help me answer that question
    13·1 answer
  • Calculate the temperature, in K, of 2.20 moles of gas occupying 4.10 L at 2.82 atm.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!