Using stoichiometry:
5.5 L of blood x (1000 mL/1L) x (15 g/100 mL) x (1 kg/1000 g) = 0.825 kg
Answer:
mole fraction of NaCl = 0.03145.
mole fraction of water = 0.9686.
Explanation:
- Mole fraction is an expression of the concentration of a solution or mixture.
- It is equal to the moles of one component divided by the total moles in the solution or mixture.
- The summation of mole fraction of all mixture components = 1.
mole fraction of NaCl = (no. of moles of NaCl) / (total no. of moles).
<em>no. of moles of NaCl = mass/molar mass </em>= (6.87 g)/(58.44 g/mol) = 0.1176 mol.
<em>no. of moles of water = mass/molar mass</em> = (65.2 g)/(18.0 g/mol) = <em>3.622 mol.</em>
<em></em>
∴ mole fraction of NaCl = (no. of moles of NaCl) / (total no. of moles) = (0.1176 mol)/(0.1176 mol + 3.622 mol) = 0.03145.
<em>∵ mole fraction of NaCl + mole fraction of water = 1.0.</em>
∴ mole fraction of water = 1.0 - mole fraction of NaCl = 1.0 - 0.03145 = 0.9686.
Answer: they both have the same molecular formula but different structural formulae
Explanation:
hope this helps :)
Given :
Moles of Na : 1.06
Moles of C : 0.528
Moles of O : 1.59
To Find :
The empirical formula of the compound.
Solution :
Dividing moles of each atom with the smallest one i.e 0.528 .
So,
Na : 1.06/0.528 = 2.007 ≈ 2
C : 0.528/0.528 = 1
O : 1.59/0.528 = 3.011 ≈ 3
Rounding all them to nearest integer, we will get the number of each atom in the empirical formula.
So, empirical formula is
.
Hence, this is the required solution.