Step 1: Set the two equations equal to each other and solve for x.
3x -5 = 6x - 8
3x + (-5+5) = 6x -8 + 5
(3x - 6x) = (6x - 6x) - 3
-3x/-3 = -3/-3
x = 1
Step 2: To solve for y take one of the given equation of your choice (for the purpose of this explanation I will only do y = 3x - 5) and replace x with 1, then solve for y
y = 3(1) - 5
y = 3 - 5
y = -2
(1,-2)
Check:
-2 = 3(1) - 5 ---> - 2 = -2
-2 = 6(1) - 8 ---> -2 = -2
Hope this helped!
Answer:
-3r + 15 ---> answer
Step-by-step explanation:
r < 5
You are going to multiply both sides with 3. The reason being is that 3 is a positive number and the equality sign will not change if you use +3.
3r < 15
Now, subtract 15 from both sides, you will get this:
3r < 15
-15 -15
-------------
3r — 15 < 0
Lastly, using the Modulus function, we are going to add a negative sign to the content of our previous step because it's already negative.
So, -3r + 15 is the final solution if r < 5 in the given equation of l3r-15l
Answer:
5in by 5in by 5in
Step-by-step explanation:
We are not told wat to find but we can as well find the dimension of the prism that will minimize its surface area.
Given
Volume = 125in³
Formula
V = w²h ..... 1
S = 2w²+4wh ..... 2
w is the side length of the square base
h is the height of the prism
125 = w²h
h = 125/w² ..... 3
Substitute eqn 3 into 2 as shown
S = 2w²+4wh
S = 2w²+4w(125/w²)
S = 2w²+500/w
To minimize the surface area, dS/dw = 0
dS/dw =4w-500/w²
0= 4w-500/w²
Multiply through by w²
0 = 4w³-500
-4w³ = -500
w³ = 500/4
w³ =125
w = cuberoot(125)
w = 5in
Get the height
125 =w²h
125 = 25h
h = 125/25
h = 5in
Hence the dimension of the prism is 5in by 5in by 5in
A 40 is the lowest she can make and that would give her exactly a 70 average.