Explanation:
When carbon atom tends to form single bonds then its hybridization is
, when carbon atom tends to form double bond then its hybridization is
and when a carbon atom is attached to a triple bond or with two double bonds then its hydridization is sp.
For example, in HCN molecule there is a triple existing between the carbon and nitrogen atom.
So, hybridization of carbon in this molecules is sp. Moreover, nitrogen atom is also attached via triple bond and it also has a lone pair of electrons. Hence, the hybridization of nitrogen atom is also sp.
Thus, we can conclude that s and p type of orbitals overlap to form the sigma bond between C and N in H−C≡N:
<u>Answer:</u> The gas produced when sodium phosphide reacts with water is phosphine.
<u>Explanation:</u>
When sodium phosphide reacts with water molecule, it leads to the production of flammable, poisonous gas known as phosphine along with the production of sodium hydroxide.
The chemical reaction for the reaction of sodium phosphide with water follows the equation:

By Stoichiometry of the reaction:
1 mole of sodium phosphide reacts with 3 moles of water to produce 1 mole of phosphine gas and 3 moles of sodium hydroxide.
Hence, the gas produced when sodium phosphide reacts with water is phosphine.
Answer:
<h2>1.806 × 10²⁴ particles</h2>
Explanation:
The number of particles in a substance can be found by using the formula
<h3>N = n × L</h3>
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 3 × 6.02 × 10²³
We have the final answer as
<h3>1.806 × 10²⁴ particles</h3>
Hope this helps you
Answer : The value of equilibrium constant (K) is, 0.004
Explanation :
First we have to calculate the concentration of 

and,

Now we have to calculate the value of equilibrium constant (K).
The given chemical reaction is:

Initial conc. 1.2 0 0
At eqm. (1.2-2x) 2x x
As we are given:
Concentration of
at equilibrium = x = 0.1 M
The expression for equilibrium constant is:
![K_c=\frac{[SO_2]^2[O_2]}{[SO_3]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSO_2%5D%5E2%5BO_2%5D%7D%7B%5BSO_3%5D%5E2%7D)
Now put all the given values in this expression, we get:



Thus, the value of equilibrium constant (K) is, 0.004
Answer:
Option (C)
Explanation:
Atoms are the basic structures that are combined to form minerals, which are further accumulated giving rise to the formation of rocks. These atoms plays a significant role in the formation of rock and their significant characteristics.
When atoms are passed through the rock cycle, they are not able to move at the same rate, but they can move at a different rate. When a rock changes from one kind to another, its constituent minerals and atoms also alters, forming a different rock type with variable characteristics and properties.
Thus, the correct answer is option (C).