Answer:
The horizontal distance covered by the firework will be 
Explanation:
Let acceleration due to gravity on the planet be g, initial velocity of the firework be u and angle made with the horizontal be ∅.
writing equation of motion in vertical direction:


and 
therefore 
writing equation of motion in horizontal direction:


therefore the equation becomes 
therefore horizontal distance traveled =
Answer:
Part a)

Part B)

Part C)

Explanation:
Part a)
Magnetic field due to a long ideal solenoid is given by

n = number of turns per unit length



now we know that magnetic field due to solenoid is


Now magnetic flux due to this magnetic field is given by




Part B)
Now for mutual inductance we know that




now we have


Part C)
As we know that induced EMF is given as



Answer:39.88 rad/s
Explanation:
Given
mass of cylinder m_1=18 kg
radius R=1.7 m
angular speed 
mass of
dropped at r=0.3 m from center
let
be the final angular velocity of cylinder
Conserving Angular momentum





Answer:
option (B)
Explanation:
Young's modulus is defined as the ratio of longitudinal stress to the longitudinal strain.
Its unit is N/m².
The formula for the Young's modulus is given by

where, F is the force applied on a rod, L is the initial length of the rod, ΔL is the change in length of the rod as the force is applied, A is the area of crossection of the rod.
It is the property of material of solid. So, when the 10 wires are co joined together to form a new wire of length 10 L, the material remains same so the young' modulus remains same.