There is no apparatus for it. It is either use something like ruler and table and rub together or rub our hands, and friction force will be showed.
For the first one, the correct answer would be "<span>Substance changes its form but not its molecular composition.". During a physical change (let's say cutting paper), the substance has its shape changed, but it is still itself (paper).
</span><span>The second one is a bit trickier: </span>
Kinetic energy of a molecule is directly influenced by temperature. If there is a higher temperature it will have a higher kinetic energy which means the molecule moves at a higher velocity. This will increase the chance of particles bouncing off of each other during the chemical reaction. That explains why the rate of reaction will be higher at a higher temperature, rather than higher at a cool temperature. The correct answer would be lower at 39F.
Answer:
When inertia increases, it's because the mass increased, which increases the normal force, which ultimately increases friction.
Answer:
1.492*10^14 electrons
Explanation:
Since we know the mass of each balloon and the acceleration, let’s use the following equation to determine the total force of attraction for each balloon.
F = m * a = 0.012 * 1.9 = 0.0228 N
Gravitational forces are negligible
Charge force = 9 * 10^9 * q * q ÷ 225
= 9 * 10^9 * q^2 ÷ 225 = 0.0228
q^2 = 5.13 ÷ 9 * 10^9
q = 2.387 *10^-5
This is approximately 2.387 *10^-5 coulomb of charge. The charge of one electron is 1.6 * 10^-19 C
To determine the number of electrons, divide the charge by this number.
N =2.387 *10^-5 ÷ 1.6 * 10^-19 = 1.492*10^14 electrons
OK think of it distance,The smaller the distance less momentum is needed the Longer the distance the the longer the momentum is needed.
And The Answer Is quite easy their was no reason to be asked
Answer:1.0meter