Answer: B. Asexual Reproduction
Explanation:
Vascular is typically only spores, sexual reproduction does not seem to fit this, and fertilization could be a key but most likely not. I am sorry if this is wrong.
Answer:
= u +at
20m/s = 0 + a*10s
a = 20m//10s
a = 2m/s²
From the data given , it is not possible to calculate the displacement , because no direction of motion is given
But it is possible to calculate the distance travelled
Distance = ut + ½ *a*t²
distance = 0 + ½ * 2m/s * 10²s
distance = 100m
Which mathematical relationship allows calculation of the equilibrium constant of a reaction if you know the standard change in Gibbs Free Energy ΔG is related to Q by the equation ΔG=RTlnQK. If ΔG < 0, then K > Q, and the reaction must proceed to the right to reach equilibrium
<h3>What is
Gibbs Free Energy?</h3>
The maximum amount of work that may be accomplished by a thermodynamically closed system at constant temperature and pressure can be determined using the Gibbs free energy (also known as Gibbs energy; symbol: displaystyle G). Additionally, it offers a prerequisite for any processes like chemical reactions that might take place in such circumstances.
The maximum amount of non-expansion work that can be taken from a closed system (one that can interchange heat and work with its surroundings but not matter) at fixed temperature and pressure is known as the Gibbs free energy change, which is measured in joules in SI. This maximum is only possible with a fully reversible method.
To learn more about Gibbs Free Energy from the given link:
brainly.com/question/9179942
#SPJ4
Answer:
λ = 5.68×10⁻⁷ m
Explanation:
Given data:
Energy of photon = 3.50 ×10⁻¹⁹ J
Wavelength of photon = ?
Solution:
E = hc/λ
h = planck's constant = 6.63×10⁻³⁴ Js
c = 3×10⁸ m/s
Now we will put the values in formula.
3.50 ×10⁻¹⁹ J = 6.63×10⁻³⁴ Js × 3×10⁸ m/s/ λ
λ = 6.63×10⁻³⁴ Js × 3×10⁸ m/s / 3.50 ×10⁻¹⁹ J
λ = 19.89×10⁻²⁶ J.m / 3.50 ×10⁻¹⁹ J
λ = 5.68×10⁻⁷ m
The flame test is commonly used to identify different metal ions by how they get excited in the presence of a flame.
Typically a nichrome wire is dipped in a solution of metal cations and then presented to a flame. The flame emits a different color than normal, depending on the type of metal cation. Each metal ion gets excited by the flame and as the electrons change energy levels they emit a photon of light, thus changing the color. Since each metal cation has unique energy levels, the colors differ depend on the metal cation.
I hope this helps.