Answer:
molar mass = 180.833 g/mol
Explanation:
- mass sln = mass solute + mass solvent
∴ solute: unknown molecular (nonelectrolyte)
∴ solvent: water
∴ mass solute = 17.5 g
∴ mass solvent = 100.0 g = 0.1 Kg
⇒ mass sln = 117.5 g
freezing point:
∴ ΔTc = -1.8 °C
∴ Kc H2O = 1.86 °C.Kg/mol
∴ m: molality (mol solute/Kg solvent)
⇒ m = ( - 1.8 °C)/( - 1.86 °C.Kg/mol)
⇒ m = 0.9677 mol solute/Kg solvent
- molar mass (Mw) [=] g/mol
∴ mol solute = ( m )×(Kg solvent)
⇒ mol solute = ( 0.9677 mol/Kg) × ( 0.100 Kg H2O )
⇒ mol solute = 0.09677 mol
⇒ Mw solute = ( 17.5 g ) / ( 0.09677 mol )
⇒ Mw solute = 180.833 g/mol
Answer: A. The oceans‘ tidal would be smaller because the moon would exert less gravitational pull on earths oceans.
Explanation:
i got it right :)
Molality= mol/ Kg
if we assume that we have 1 kg of water, we have 3.19 moles of solute.
the formula for mole fraction --> mole fraction= mol of solule/ mol of solution
1) if we have 1 kg of water which is same as 1000 grams of water.
2) we need to convert grams to moles using the molar mass of water
molar mass of H₂O= (2 x 1.01) + 16.0 = 18.02 g/mol
1000 g (1 mol/ 18.02 grams)= 55.5 mol
3) mole of solution= 55.5 moles + 3.19 moles= 58.7 moles of solution
4) mole fraction= 3.19 / 58.7= 0.0543
Answer:
Box is made up of <em>copper</em>, because density is <em>8.96 g/cm³.</em>
Explanation:
Given data:
Volume of box = 17.63 cm³
Mass of box = 158 g
Which metal box is this = ?
Solution:
First we will calculate the density of box then we will compare it with the density value of given metals.
d = m/v
d = 158 g/ 17.63 cm³
d = 8.96 g/cm³
The calculated density is similar to the given density value of copper thus box is made up of copper.