Explanation:
Hydrogen bonding is a special type of dipole-dipole attraction between molecules, not a covalent bond to a hydrogen atom. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom and another very electronegative atom.
The bonds between oxygen and the hydrogen atoms within the water molecule are polar covalent bonds,i.e., the electrons are not shared equally between oxygen and hydrogen. Oxygen has a higher affinity for electrons than does hydrogen
Answer:
1-46
2-18
Explanation:
c=12 H=1 O=16
ethanol (12×2)+(6×1)+(16)=46
water (2×1)+(16)=18
Answer:
The answer to your question is Volume = 11.4 L
Explanation:
Data
Volume 1 = V1 = 6 L
Pressure 1 = P1 = 1 atm
Temperature 1 = T1 = 22°C
Volume 2 = V2 = ?
Pressure 2 = 0.45 atm
Temperature 2 = -21°C
Process
1.- Convert temperature (°C) to °K
T1 = 273 + 22 = 295°K
T2 = 273 + (-21) = 252°K
2.- Use the combined gas law to solve this problem
P1V1 / T1 = P2V2 / T2
-Solve for V2
V2 = P1V1T2 / T1P2
-Substitution
V2 = (6)(1)(252) / (295)(0.45)
- Simplification
V2 = 1512 / 132.75
- Result
V2 = 11.38 L
Answer:
A.
Explanation:
zinc and hydrochloric acid reacts to form zinc chloride and hydrogen.
hope it helps. :)
Answer:
The number of copper atoms 12.405 ×10²³ atoms.
The number of silver atoms 13.13 ×10²³ atoms.
Beaker B have large number of atoms.
Explanation:
Given data:
In beaker A
Number of moles of copper = 2.06 mol
Number of atoms of copper = ?
In beaker B
Mass of silver = 222 g
Number of atoms of silver = ?
Solution:
For beaker A.
we will solve this problem by using Avogadro number.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms in one mole of substance.
While we have to find the copper atoms in 2.06 moles.
So,
63.546 g = 1 mole = 6.022×10²³ atoms
For 2.06 moles.
2.06 × 6.022×10²³ atoms
The number of copper atoms 12.405 ×10²³ atoms.
For beaker B:
107.87 g = 1 mole = 6.022×10²³ atoms
For 222 g
222 g / 101.87 g/mol = 2.18 moles
2.18 mol × 6.022×10²³ atoms = 13.13 ×10²³ atoms