Answer:
1/25 ; 3/20 ; 3/50
Step-by-step explanation:
Total number of stickers :
(10 + 15 + 25) = 50 stickers
Probability = required outcome / Total possible outcomes
a. Selecting blue and blue stickers
P(First blue) = 10/50 = 1/5
P(second blue) = 10/50 = 1/5
1/5 * 1/5 = 1 / 25
b. Selecting one red sticker and then one orange sticker
P(First red) = 15/50 = 3/10
P(second orange) = 25/50 = 1/2
3/10 * 1/2 = 3 /20
Selecting one red sticker and then one blue sticker
P(First red) = 15/50 = 3/10
P(second blue) = 10/50 = 1/5
3/10 * 1/5 = 3 / 50
Answer:
Number of hours= 48 hours
Step-by-step explanation:
Giving the following information:
Hourly rate= $7.25
Total earned= $348
<u>To calculate the number of hours worked, we need to use the following formula:</u>
Total earned= hourly rate*number of hours
number of hours= total earned / hourly rate
number of hours= 348 / 7.25
number of hours= 48 hours
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
cot(x)sec⁴(x) cot(x)sec⁴(x)
0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
0 = cos⁴(x)(1 + tan²(x))²
0 = cos⁴(x) or 0 = (1 + tan²(x))²
⁴√0 = ⁴√cos⁴(x) or √0 = (√1 + tan²(x))²
0 = cos(x) or 0 = 1 + tan²(x)
cos⁻¹(0) = cos⁻¹(cos(x)) or -1 = tan²(x)
90 = x or √-1 = √tan²(x)
i = tan(x)
(No Solution)
2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
sin²(x) - cos²(x) = sin²(x) - cos²(x)
+ cos²(x) + cos²(x)
sin²(x) = sin²(x)
- sin²(x) - sin²(x)
0 = 0
3. 1 + sec²(x)sin²(x) = sec²(x)
sec²(x) sec²(x)
cos²(x) + sin²(x) = 1
cos²(x) = 1 - sin²(x)
√cos²(x) = √(1 - sin²(x))
cos(x) = √(1 - sin²(x))
cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
x = 0
4. -tan²(x) + sec²(x) = 1
-1 -1
tan²(x) - sec²(x) = -1
tan²(x) = -1 + sec²
√tan²(x) = √(-1 + sec²(x))
tan(x) = √(-1 + sec²(x))
tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
x = 0
They didn’t multiply 7 by 12, making it seven dozen
12.
It is easy all you have to do is 15-3 because 1+2=3