<em>-</em><em>6</em><em>0</em><em>+</em><em>(</em><em>3</em><em>0</em><em>0</em><em>)</em><em> </em><em>+</em><em>100</em>
<em>-</em><em>6</em><em>0</em><em>-</em><em>3</em><em>0</em><em>0</em><em>+</em><em>100</em>
<em>=</em><em> </em><em>-</em><em>2</em><em>6</em><em>0</em>
<em>=</em><em>5</em><em>0</em><em>-</em><em>(</em><em>-</em><em>4</em><em>0</em><em>)</em><em>-</em><em>(</em><em>-</em><em>2</em><em>)</em>
<em>=</em><em>5</em><em>0</em><em>+</em><em>4</em><em>0</em><em>+</em><em>2</em>
<em>=</em><em>9</em><em>2</em>
Answer:
9b^8 + 24b^3 = (3b^3) [ 3b^5 + (8)]
greatest common monomial is 3*
Step-by-step explanation:
we see 9b^8 + 24b^3
there is a common factor here.
3b^3 so
9b^8 + 24b^3 = (3b^3) * 3b^5 + (3b^3) *(8)
9b^8 + 24b^3 = (3b^3) [ 3b^5 + (8)]
so...
Eg. the first loan is x, the second loan will be (9,000 - x)
First, we need to make an equation based on the problem
first interest + second interest = 492
5% of x + 6% of (9,000 - x) = 492
<em>This is the equation</em>
Second, solve the equation and find out the value of x (first loan)
0.05x + 0.06(9.000 - x) = 492
0.05x + 540 - 0.06x = 492
-0.01x + 540 = 492
-0.01x = 492 - 540
-0.01x = -48
x = -48/-0.01
x = 4,800
Third, find the second loan
9,000 - x
= 9,000 - 4,800
= 4,200
SUMMARY
The first loan that has interest of 5% is $4,800
The second loan that has interest of 6% is $4,200
Given:
Miguel's height:
Actual = 5 feet 10 inches
Shadow = 4 feet 2 inches
Tower's height
Actual = x
Shadow = 8 feet 9 inches
First, we need to convert the height into inches to avoid confusion.
1 foot = 12 inches.
Miguel:
5 ft x 12in/ft = 60 inches + 10 inches = 70 inches ACTUAL
4 ft x 12in/ft = 48 inches + 2 inches = 50 inches SHADOW
Tower:
8 ft x 12in/ft = 96 inches + 9 inches = 105 inches SHADOW
Ratio of Actual to shadow:
Miguel: 70 : 50
Tower: x : 105
70 : 50 = x : 105
70*105 = 50x
7350 = 50x
7350 / 50 = x
147 = x
Actual height of the tower is 147 inches or 12 feet 3 inches long.
To check:
Miguel : 70 / 50 = 1.40
Tower : 147 / 105 = 1.40
315/356 = about 0.88 or 88%. <span>
64/144= about .044 or 44%
</span><span>They will not have equal opportunity to get the math class they requested, if both percents were equal, it would be fair. For honors students, 88% of them will get the class they requested, but for non honors students it's 44%.</span>