Answer: x= -1, z=2, y= -4
Step-by-step explanation:
System of equations:
-5x - 4y - 3z= 15 +
<u>-10x + 4y + 6z= 6</u>
-15x + 3z = 21 ------> 3 (-5x + z) = 7.3
-5x + z = 7
now,
-10x + 4y + 6z= 6
2(-5x + z) + 4y + 4z = 6
14 + 4y + 4z = 6
7 + 2y + 2z = 3
2y + 2z= -4
y+z=-2
Now we were using the equation: 20x + 4y + 4z = -28
20x + 4(y+z) = 20x -8= - 28
20 x = -20
x= -1
With this we can find y and z
X=-1
-5x + z = 7
z= 2
y+z=-2
y=-4
Finally we have: x= -1, z=2, y= -4
I hope this can help you.
Thank you
Answer:
a
![P(X = 10 ) = 0.0096](https://tex.z-dn.net/?f=P%28X%20%3D%20%2010%20%29%20%3D%20%200.0096)
b
![P(X = 10 ) = 0.0085](https://tex.z-dn.net/?f=P%28X%20%3D%2010%20%29%20%3D%20%200.0085)
c
Option A is correct
Step-by-step explanation:
From the question we are told that
The sample size is n = 15
The probability of success is ![p = 0.35](https://tex.z-dn.net/?f=p%20%3D%20%200.35)
The number of success we are considering is r = 10
Now the probability of failure is mathematically evaluated as
![q = 1- p](https://tex.z-dn.net/?f=q%20%3D%20%201-%20p)
substituting value
![q = 1- 0.35](https://tex.z-dn.net/?f=q%20%3D%20%201-%200.35)
![q = 0.65](https://tex.z-dn.net/?f=q%20%3D%200.65)
Now using the binomial distribution to find the probability of exactly 10 successes we have that
![P(X = r ) = [\left n } \atop {r}} \right. ] * p^r * q^{n- r}](https://tex.z-dn.net/?f=P%28X%20%3D%20%20r%20%29%20%3D%20%20%5B%5Cleft%20n%20%7D%20%5Catop%20%7Br%7D%7D%20%5Cright.%20%5D%20%2A%20p%5Er%20%2A%20%20q%5E%7Bn-%20r%7D)
substituting values
![P(X = 10 ) = [\left 15 } \atop {10}} \right. ] * p^{10}* q^{15- 10}](https://tex.z-dn.net/?f=P%28X%20%3D%20%2010%20%29%20%3D%20%20%5B%5Cleft%2015%20%7D%20%5Catop%20%7B10%7D%7D%20%5Cright.%20%5D%20%2A%20p%5E%7B10%7D%2A%20%20q%5E%7B15-%2010%7D)
Where
mean 15 combination 10 which is evaluated with a calculator to obtain
![[\left 15 } \atop {10}} \right. ] = 3003](https://tex.z-dn.net/?f=%5B%5Cleft%2015%20%7D%20%5Catop%20%7B10%7D%7D%20%5Cright.%20%5D%20%20%3D%203003)
So
![P(X = 10 ) = 3003 * 0.35 ^{10}* 0.65^{15- 10}](https://tex.z-dn.net/?f=P%28X%20%3D%20%2010%20%29%20%3D%20%203003%20%2A%200.35%20%5E%7B10%7D%2A%20%200.65%5E%7B15-%2010%7D)
![P(X = 10 ) = 0.0096](https://tex.z-dn.net/?f=P%28X%20%3D%20%2010%20%29%20%3D%20%200.0096)
Now using the normal distribution to approximate the probability of exactly 10 successes, we have that
![P(X = r ) = P( r < X < r )](https://tex.z-dn.net/?f=P%28X%20%3D%20r%20%29%20%3D%20%20P%28%20r%20%20%3C%20%20X%20%3C%20%20%20r%20%29)
Applying continuity correction
![P(X = r ) = P( r -0.5 < X < r +0.5)](https://tex.z-dn.net/?f=P%28X%20%3D%20r%20%29%20%3D%20%20P%28%20r%20-0.5%20%3C%20%20X%20%3C%20%20%20r%20%2B0.5%29)
substituting values
![P(X = 10) = P( 10-0.5 < X < 10+0.5)](https://tex.z-dn.net/?f=P%28X%20%3D%2010%29%20%3D%20%20P%28%2010-0.5%20%3C%20%20X%20%3C%20%20%2010%2B0.5%29)
![P(X = 10 ) = P( 9.5 < X < 10.5)](https://tex.z-dn.net/?f=P%28X%20%3D%2010%20%29%20%3D%20%20P%28%209.5%20%3C%20%20X%20%3C%20%20%2010.5%29)
Standardizing
![P(X = r ) = P( \frac{9.5 - \mu }{\sigma } < \frac{X - \mu }{\sigma } < \frac{10.5 - \mu}{\sigma } )](https://tex.z-dn.net/?f=P%28X%20%3D%20r%20%29%20%3D%20%20P%28%20%5Cfrac%7B9.5%20-%20%20%5Cmu%20%7D%7B%5Csigma%20%7D%20%20%3C%20%20%5Cfrac%7BX%20-%20%5Cmu%20%7D%7B%5Csigma%20%7D%20%20%3C%20%20%5Cfrac%7B10.5%20-%20%5Cmu%7D%7B%5Csigma%20%7D%20%20%29)
The where
is the mean which is mathematically represented as
![\mu = n * p](https://tex.z-dn.net/?f=%5Cmu%20%20%3D%20%20n%20%2A%20%20p)
substituting values
![\mu = 15 * 0.35](https://tex.z-dn.net/?f=%5Cmu%20%20%3D%20%2015%20%2A%20%200.35)
![\mu = 5.25](https://tex.z-dn.net/?f=%5Cmu%20%20%3D%20%205.25)
The standard deviation is evaluated as
![\sigma = \sqrt{n * p * q }](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%20%20%5Csqrt%7Bn%20%20%2A%20%20p%20%20%2A%20q%20%7D)
substituting values
![\sigma = \sqrt{15 * 0.35 * 0.65 }](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%20%20%5Csqrt%7B15%20%20%20%2A%20%200.35%20%20%2A%200.65%20%7D)
![\sigma = 1.8473](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%201.8473)
Thus
![P(X = 10 ) = P( \frac{9.5 - 5.25 }{1.8473 } < \frac{X - 5.25 }{1.8473 } < \frac{10.5 - 5.25}{1.8473 } )](https://tex.z-dn.net/?f=P%28X%20%3D%2010%20%29%20%3D%20%20P%28%20%5Cfrac%7B9.5%20-%20%205.25%20%7D%7B1.8473%20%7D%20%20%3C%20%20%5Cfrac%7BX%20-%205.25%20%7D%7B1.8473%20%7D%20%20%3C%20%20%5Cfrac%7B10.5%20-%205.25%7D%7B1.8473%20%7D%20%20%29)
![P(X = 10 ) = P( 2.30 < Z < 2.842 )](https://tex.z-dn.net/?f=P%28X%20%3D%2010%20%29%20%3D%20%20P%28%202.30%20%3C%20Z%20%3C%20%202.842%20%20%29)
![P(X = 10 ) = P(Z < 2.842 ) - P(Z < 2.30 )](https://tex.z-dn.net/?f=P%28X%20%3D%2010%20%29%20%3D%20P%28Z%20%3C%20%202.842%20%29%20-%20%20P%28Z%20%3C%20%202.30%20%20%20%29)
From the normal distribution table we obtain the
as
![P(Z < 2.841) = 0.99775](https://tex.z-dn.net/?f=P%28Z%20%3C%202.841%29%20%3D%200.99775)
And the ![P(Z < 2.30)](https://tex.z-dn.net/?f=P%28Z%20%3C%202.30%29)
![P(Z < 2.30) = 0.98928](https://tex.z-dn.net/?f=P%28Z%20%3C%202.30%29%20%3D%20%200.98928)
There value can also be obtained from a probability of z calculator at (Calculator dot net website)
So
![P(X = 10) = 0.99775 - 0.98928](https://tex.z-dn.net/?f=P%28X%20%3D%2010%29%20%3D%20%20%200.99775%20-%200.98928)
![P(X = 10 ) = 0.0085](https://tex.z-dn.net/?f=P%28X%20%3D%2010%20%29%20%3D%20%200.0085)
Looking at the calculated values for question a and b we see that the values are fairly different.
Answer:
![a = 8.5t](https://tex.z-dn.net/?f=a%20%3D%208.5t)
![y = 32.55](https://tex.z-dn.net/?f=y%20%3D%2032.55)
Step-by-step explanation:
Solving (9): The equation of the table
We start by calculating the slope (m)
![m = \frac{a_2 - a_1}{t_2 - t_1}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7Ba_2%20-%20a_1%7D%7Bt_2%20-%20t_1%7D)
Where:
![(t_1,a_1) = (15,127.5)](https://tex.z-dn.net/?f=%28t_1%2Ca_1%29%20%3D%20%2815%2C127.5%29)
![(t_2,a_2) = (16.5,140.25)](https://tex.z-dn.net/?f=%28t_2%2Ca_2%29%20%3D%20%2816.5%2C140.25%29)
![m = \frac{140.25 - 127.5}{16.5 - 15}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B140.25%20-%20127.5%7D%7B16.5%20-%2015%7D)
![m = \frac{12.75}{1.5}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B12.75%7D%7B1.5%7D)
![m = 8.5](https://tex.z-dn.net/?f=m%20%3D%208.5)
The equation is then calculated using:
![a = m(t - t_2) + a_2](https://tex.z-dn.net/?f=a%20%3D%20m%28t%20-%20t_2%29%20%2B%20a_2)
So, we have:
![a = 8.5(t - 16.5) + 140.25](https://tex.z-dn.net/?f=a%20%3D%208.5%28t%20-%2016.5%29%20%2B%20140.25)
Open bracket
![a = 8.5t - 140.25 + 140.25](https://tex.z-dn.net/?f=a%20%3D%208.5t%20-%20140.25%20%2B%20140.25)
![a = 8.5t](https://tex.z-dn.net/?f=a%20%3D%208.5t)
Solving (10):
![4.8y = 156.24](https://tex.z-dn.net/?f=4.8y%20%3D%20156.24)
Required
Find x
Divide both sides by 4.8
![y = 32.55](https://tex.z-dn.net/?f=y%20%3D%2032.55)
A parabola is a curved shape in a graph that has either a maximum or a minimum (which is the fixed point) and any point is equidistant from that fixed point. You can tell it is a parabola because most likely in an equation the x with be squared.