Answer:
70.6 %
Explanation:
First step, we define the reaction:
2P + 3Br₂ → 2PBr₃
We determine the moles of reactant:
35 g . 1mol / 159.8 g = 0.219 moles
We assume, the P is in excess, so the bromine is the limiting reagent.
3 moles of Br₂ can produce 2 moles of phophorous tribromide
Then, 0.219 moles may produce (0.219 . 2) /3 = 0.146 moles of PBr₃
We convert moles to mass:
0.146 mol . 270.67 g /mol = 39.5 g
That's the 100 % yield reaction, also called theoretical yield. The way to determine the % yield is:
(Yield produced / Thoeretical yield) . 100
(27.9 / 39.5) . 100 = 70.6 %
You haven't attached any options but anyways, to help you with your question, elements belonging to the same group (e.g. alkali metals, noble gases) all have the same chemical properties. Hydrogen, for example, have the same properties with Sodium, Potassium and Lithium.
The mass of sodium chloride at the two parts are mathematically given as
- m=10,688.18g
- mass of Nacl(m)=39.15g
<h3>What is the mass of sodium chloride that can react with the same volume of fluorine gas at STP?</h3>
Generally, the equation for ideal gas is mathematically given as
PV=nRT
Where the chemical equation is
F2 + 2NaCl → Cl2 + 2NaF
Therefore
1.50x15=m/M *(1.50*0.0821)
1-50 x 15=m/58.5 *(1.50*0.0821)
m=10,688.18g
Part 2
PV=m'/MRT
1*15=m'/58.5*0.0821*273
m'=39.15g
mass of Nacl(m)=m'=39.15g
Read more about Chemical Reaction
brainly.com/question/11231920
#SPJ1
Nothing, he shouldn’t be able to move it. Think about it like this say you try really hard to push something that is 5,000 pounds and you push as hard as you can. Well you can’t move it bc it weighs more than you can push. I’m sure their is a equation you can use to see how much you can push (body weight=force?)
Answer:
I think this is because math and chemistry go together and the math problems are science related.
Explanation: