That prediction is not correct because Xenon is extremely stable; column 18 of the periodic table contains the noble gasses, which are stable because their outer-most energy levels are completely filled. Having the octet (8) of valence electrons means that the element no longer needs to lose or gain electrons to gain stability.
The column 17 elements are unstable because they only have one valence electron short of the stable octet configuration of the noble gasses.
Answer:
his speeds while going to city is 10 mph and while his round trip the speed will be 9 mph
Explanation:
Let say the speed of the bicycle while he moves towards the city is "v"
now the speed of the round trip must be smaller by 1 mph
so its speed for round trip will be

now we know that total time of the motion is 19 hr
so we will have


so we will have




by solving above equation we have

so his speeds while going to city is 10 mph and while his round trip the speed will be 9 mph
Answer:
B. stearothermophilus and S. ruber
Explanation:
B. stearothermophilus and S. ruber
In solar evaporation ponds the temperature is higher and the salt concentration is also higher because of the water evaporated so sunder such extreme conditions this hybrid bacteria is capable of surviving. B. stearothermophilus is thermophilus bacteria which grows at high temperature and S. ruber is halophilic bacteria which grows in saline environment. So, these two bacteria best suited for the above hybrid condition.
Answer: It is not likely.
Explanation:
When the bus is moving forward, all the objects inside of it also are moving forward.
Now, as the objects inside the buss are not fixed to the bus, if the bus suddenly stops the objects inside of it will keep moving forward, because of the conservation of the momentum, defined as the quantity of motion (Similar to when you are in a car and it suddenly stops, you can feel the forward impulse).
Then is not likely that, in a case where the bus stops suddenly, an object inside the bus flies backward in opposite direction to the previous movement of the bus.
The formula that is applicable here is E = kQ/r^2 in which the energy of attraction is proportional to the charges and inversely proportional to the square of the distance. In this case,
kQ1/(r1)^2 = kQ2/(r2)^2 r1=l/3, r2=2l/3solve Q1/Q2
kQ1/(l/3)^2 = kQ2/(2l/3)^2 kQ1/(l^2/9) = kQ2/(4l^2/9)Q1/Q2 = 1/4