Answer:
F = 0.112 N
Explanation:
To find the magnitude of magnetic force on the wire, you use the following formula:
(1)
L: length of the wire = 200cm = 0.2m
i: current in the wire = 30 A
B: magnitude of the magnetic field = 0.055 T
θ: angle between the directions of L and B = 20°
You replace the values of L, i, B and θ in the equation (1):

hence, the magnetic force on teh wire is 0.112N
Answer:
Explanation:
The amplitude of the oscillation under SHM will be .5 m and the equation of
SHM can be written as follows
x = .5 sin(ωt + π/2) , here the initial phase is π/2 because when t = 0 , x = A ( amplitude) , ω is angular frequency.
x = .5 cosωt
given , when t = .2 s , x = .35 m
.35 = .5 cos ωt
ωt = .79
ω = .79 / .20
= 3.95 rad /s
period of oscillation
T = 2π / ω
= 2 x 3.14 / 3.95
= 1.6 s
b )
ω = 
ω² = k / m
k = ω² x m
= 3.95² x .6
= 9.36 N/s
c )
v = ω
At t = .2 , x = .35
v = 3.95 
= 3.95 x .357
= 1.41 m/ s
d )
Acceleration at x
a = ω² x
= 3.95 x .35
= 1.3825 m s⁻²
Answer:
The frequency is f = 6Hz
Explanation:
Given
The time division setting is 
The number of division is 
The total time for 10 division can be mathematically obtained as


From the question the time for 3 cycle is

Then the for one cycle which equivalent to the Period


The frequency is generally given as 
Now substituting values we have


Answer:
The answer is h/4
Explanation:
When Peter collides with Fred, the collision is inelastic & they both proceed with a velocity of V/2.
let m represent the masses for Peter & Fred
v represent the initial velocity of Peter
V represent final velocity of both of them
mv + 3m × 0 = (m+m)V
V = v/2
Using the expression; H = v² / 2g .............Eqn 1
Upon substitution of V/2 into Eqn 1 above,
H = (V/2)² / 2g
H = (V²/4) ÷ 2g
Therefore height will be h/4
The answer for your problem is shown on the picture.