Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
Answer:
310 meters
Explanation:
Given:
v₀ = 0 m/s
t = 8.0 s
a = -9.8 m/s²
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (8.0 s) + ½ (-9.8 m/s²) (8.0 s)²
Δy = -313.6
Rounded to two significant figures, the object fell 310 meters.
Answer:
Explanation:
As it moves along, the paper is given a strong negative electrical charge by another corona wire. When the paper moves near the drum, its negative charge attracts the positively charged toner particles away from the drum.
I believe the correct answer is C all the other options seem funny to me
Answer:
D) liquid and gas
Explanation:
The three main states of matter are:
- Solid: in solids, the molecules are bond together by strong intermolecular forces, so the molecules are not free to move. Therefore, a solid has a definite shape, so it does not take the shape of its container.
- Liquid: in liquids, molecules are not bond together, so they are free to move (still, there are some weak intermolecular forces which keep them close to each other). Since in liquids molecules can slide past each other, they take the shape of the container.
- Gas: in gases, molecules are totally free to move, so gases take the shape (and also the volume) of the container.
Based on the definitions above, we can conclude that the correct answer is
D) liquid and gas