1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
3 years ago
6

A bicyclist bikes the 90 mi to a city averaging a certain speed. The return trip is made at a speed that is 1 mph slower. Total

time for the round trip is 19 hr. Find the​ bicyclist's average speed on each part of the trip.
Physics
1 answer:
Lynna [10]3 years ago
5 0

Answer:

his speeds while going to city is 10 mph and while his round trip the speed will be 9 mph

Explanation:

Let say the speed of the bicycle while he moves towards the city is "v"

now the speed of the round trip must be smaller by 1 mph

so its speed for round trip will be

v_2 = v - 1

now we know that total time of the motion is 19 hr

so we will have

t_1 = \frac{90}{v}

t_2 = \frac{90}{v - 1}

so we will have

t_1 + t_2 = 19 hr

\frac{90}{v} + \frac{90}{v-1} = 19

90(2v - 1) = 19(v^2 - v)

19 v^2 - 199 v + 90 = 0

by solving above equation we have

v = 10 mph

so his speeds while going to city is 10 mph and while his round trip the speed will be 9 mph

You might be interested in
A stationary boat in the ocean is experiencing waves from a storm. The waves move at 59 km/h and have a wavelength of 145 m . Th
krek1111 [17]

Answer:

The time elapses until the boat is first at the trough of a wave is 4.46 seconds.

Explanation:

Speed of the wave, v = 59 km/h = 16.38 m/s

Wavelength of the wave, \lambda=145\ m

If f is the frequency of the wave. The frequency of a wave is given by :

v=f\lambda\\\\f=\dfrac{v}{\lambda}\\\\f=\dfrac{16.38\ m/s}{145\ m}\\\\f=0.112\ Hz

The time period of the wave is given by :

T=\dfrac{1}{f}\\\\T=\dfrac{1}{0.112\ Hz}\\\\T=8.92\ s

We need to find the time elapses until the boat is first at the trough of a wave. So, the time will be half of the time period of the wave.

T=\dfrac{8.92}{2}\\\\T=4.46\ s

Hence, this is the required solution.

5 0
3 years ago
What level of nitrates is considered clean water?
lana66690 [7]
The U.S. Environmental Protection Agency (EPA) standard for nitrate in drinking water is 10 milligrams of nitrate (measured as nitrogen) per liter of drinking water (mg/L). * Drinking water with levels of nitrate at or below 10 mg/L is considered safe for everyone.
6 0
3 years ago
What does the word “adverse” mean in the following sentence? Adverse reactions, such as fever and headache, can occur if the med
Stells [14]
I think it's D. unfavorable hope it helps
3 0
3 years ago
Read 2 more answers
A parallel-plate capacitor is charged by connecting it to a battery. If the battery is disconnected and then the separation betw
TEA [102]

Answer:

The charge stored in the capacitor will stay the same. However, the electric potential across the two plates will increase. (Assuming that the permittivity of the space between the two plates stays the same.)

Explanation:

The two plates of this capacitor are no longer connected to each other. As a result, there's no way for the charge on one plate to move to the other. Q, the amount of charge stored in this capacitor, will stay the same.

The formula \displaystyle Q = C\, V relates the electric potential across a capacitor to:

  • Q, the charge stored in the capacitor, and
  • C, the capacitance of this capacitor.

While Q stays the same, moving the two plates apart could affect the potential V by changing the capacitance C of this capacitor. The formula for the capacitance of a parallel-plate capacitor is:

\displaystyle C = \frac{\epsilon\, A}{d},

where

  • \epsilon is the permittivity of the material between the two plates.
  • A is the area of each of the two plates.
  • d is the distance between the two plates.

Assume that the two plates are separated with vacuum. Moving the two plates apart will not affect the value of \epsilon. Neither will that change the area of the two plates.

However, as d (the distance between the two plates) increases, the value of \displaystyle C = \frac{\epsilon\, A}{d} will become smaller. In other words, moving the two plates of a parallel-plate capacitor apart would reduce its capacitance.

On the other hand, the formula \displaystyle Q = C\, V can be rewritten as:

V = \displaystyle \frac{Q}{C}.

The value of Q (charge stored in this capacitor) stays the same. As the value of C becomes smaller, the value of the fraction will become larger. Hence, the electric potential across this capacitor will become larger as the two plates are moved away from one another.  

3 0
3 years ago
¿Cuánto tardará un automóvil, con movimiento uniforme, en recorrer una distancia de 195 Km si su velocidad es de 30Km/h.?
kykrilka [37]

Answer:

あなたのポイントを無駄にして申し訳ありませんが、あなたの質問がその言語を日本語にすることがわかりません

7 0
3 years ago
Other questions:
  • PLEASE HELP
    11·1 answer
  • A car with a mass of 1.50x10^3 kg starts from rest and accelerates to a speed of 18.0m/s in 12.0 s. assume that the force of res
    10·1 answer
  • Which of the following statements concerning the scientific method is true?
    6·1 answer
  • Why do the compass needles change direction when the electric current is Flowing
    10·2 answers
  • Can anyone please help me​
    13·1 answer
  • Why is mercury not suitable as the liquid in the U-tube? (the relationship between density of the liquid and the pressure in the
    10·1 answer
  • If a fly gets his wings cut of, is it still a fly?
    15·2 answers
  • Two cars each have a mass of 1050 kg. If the gravitational force between
    13·2 answers
  • Explain why fish survive under water when the surface is already frozen​
    9·1 answer
  • A spring with k = 136 N/m is compressed by 12.5 cm. How much elastic potential energy does the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!