1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
finlep [7]
3 years ago
10

Suppose X and Y are random variables with joint density function. f(x, y) = 0.1e−(0.5x + 0.2y) if x ≥ 0, y ≥ 0 0 otherwise (a) I

s f a joint density function? Yes No (b) Find P(Y ≥ 8). (Round your answer to four decimal places.) Find P(X ≤ 5, Y ≤ 8). (Round your answer to four decimal places.) (c) Find the expected value of X. Find the expected value of Y.
Mathematics
1 answer:
Hatshy [7]3 years ago
5 0

a. f_{X,Y} is a joint density function if its integral over the given support is 1:

\displaystyle\int_{-\infty}^\infty\int_{-\infty}^\infty f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=\frac1{10}\int_0^\infty\int_0^\infty e^{-x/2-y/5}\,\mathrm dx\,\mathrm dy

=\displaystyle\frac1{10}\left(\int_0^\infty e^{-x/2}\,\mathrm dx\right)\left(\int_0^\infty e^{-y/5}\,\mathrm dy\right)=\frac1{10}\cdot2\cdot5=1

so the answer is yes.

b. We should first find the density of the marginal distribution, f_Y(y):

f_Y(y)=\displaystyle\int_{-\infty}^\infty f_{X,Y}(x,y)\,\mathrm dx=\frac1{10}\int_0^\infty e^{-x/2-y/5}\,\mathrm dy

f_Y(y)=\begin{cases}\dfrac15e^{-y/5}&\text{for }y\ge0\\\\0&\text{otherwise}\end{cases}

Then

P(Y\ge8)=\displaystyle\int_8^\infty f_Y(y)\,\mathrm dy=e^{-8/5}

or about 0.2019.

For the other probability, we can use the joint PDF directly:

P(X\le5,Y\le8)=\displaystyle\int_0^5\int_0^8f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=1+e^{-41/10}-e^{-5/2}-e^{-8/5}

which is about 0.7326.

c. We already know the PDF for Y, so we just integrate:

E[Y]=\displaystyle\int_{-\infty}^\infty y\,f_Y(y)\,\mathrm dy=\frac15\int_0^\infty ye^{-y/5}\,\mathrm dy=\boxed5

You might be interested in
Find the median, mean, and range.
RSB [31]

Hey there!

The median is 8.5

The mean is 7

The range is 11

Hope this helps!

God bless ❤️

xXxGolferGirlxXx

5 0
4 years ago
For the following telescoping series, find a formula for the nth term of the sequence of partial sums {Sn}. Then evaluate limn→[
Ivenika [448]

Answer:

The following are the solution to the given points:

Step-by-step explanation:

Given value:

1) \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\2) \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

Solve point 1 that is \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\:

when,

k= 1 \to  s_1 = \frac{1}{1+1} - \frac{1}{1+2}\\\\

                  = \frac{1}{2} - \frac{1}{3}\\\\

k= 2 \to  s_2 = \frac{1}{2+1} - \frac{1}{2+2}\\\\

                  = \frac{1}{3} - \frac{1}{4}\\\\

k= 3 \to  s_3 = \frac{1}{3+1} - \frac{1}{3+2}\\\\

                  = \frac{1}{4} - \frac{1}{5}\\\\

k= n^  \to  s_n = \frac{1}{n+1} - \frac{1}{n+2}\\\\

Calculate the sum (S=s_1+s_2+s_3+......+s_n)

S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....\frac{1}{n+1}-\frac{1}{n+2}\\\\

   =\frac{1}{2}-\frac{1}{5}+\frac{1}{n+1}-\frac{1}{n+2}\\\\

When s_n \ \ dt_{n \to 0}

=\frac{1}{2}-\frac{1}{5}+\frac{1}{0+1}-\frac{1}{0+2}\\\\=\frac{1}{2}-\frac{1}{5}+\frac{1}{1}-\frac{1}{2}\\\\= 1 -\frac{1}{5}\\\\= \frac{5-1}{5}\\\\= \frac{4}{5}\\\\

\boxed{\text{In point 1:} \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2} =\frac{4}{5}}

In point 2: \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}

when,

k= 1 \to  s_1 = \frac{1}{(1+6)(1+7)}\\\\

                  = \frac{1}{7 \times 8}\\\\= \frac{1}{56}

k= 2 \to  s_1 = \frac{1}{(2+6)(2+7)}\\\\

                  = \frac{1}{8 \times 9}\\\\= \frac{1}{72}

k= 3 \to  s_1 = \frac{1}{(3+6)(3+7)}\\\\

                  = \frac{1}{9 \times 10} \\\\ = \frac{1}{90}\\\\

k= n^  \to  s_n = \frac{1}{(n+6)(n+7)}\\\\

calculate the sum:S= s_1+s_2+s_3+s_n\\

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(n+6)(n+7)}\\\\

when s_n \ \ dt_{n \to 0}

S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(0+6)(0+7)}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{6 \times 7}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{42}\\\\=\frac{45+35+28+60}{2520}\\\\=\frac{168}{2520}\\\\=0.066

\boxed{\text{In point 2:} \sum ^{\infty}_{k = 1} \frac{1}{(n+6)(n+7)} = 0.066}

8 0
3 years ago
Given the graph above find an equation for the graph and write your anwser in slope intercept form
lys-0071 [83]

<u>Given:</u>

Given that the graph of a linear function.

We need to determine the equation of the graph in slope intercept form.

<u>Slope</u>:

Consider any two coordinates from the equation of the line to determine the slope.

Let the two coordinates are (-4,3) and (4,-1)

The slope can be determined using the formula,

m=\frac{y_2-y_1}{x_2-x_1}

Substituting the coordinates in the above formula, we get;

m=\frac{-1-3}{4+4}

m=\frac{-4}{8}

m=-\frac{1}{2}

Thus, the slope of the equation is m=-\frac{1}{2}

<u>Value of y - intercept:</u>

The value of y - intercept is the value of y when x = 0.

Hence, from the graph, it is obvious that the value of y when x = 0 is 1.

Hence, the value of y - intercept is 1.

Thus, y - intercept is b=1

<u>Equation of the line:</u>

The equation of the line can be determined using the formula,

y=mx+b

Substituting the slope m=-\frac{1}{2} and the y - intercept b=1

Thus, we get;

y=-\frac{1}{2}x+1

Thus, the equation of the line is y=-\frac{1}{2}x+1

5 0
3 years ago
Please answer the question
Dominik [7]
Can't see it the equation is to blurry.
5 0
3 years ago
-<img src="https://tex.z-dn.net/?f=%5Csqr%5Csqrt4-x%20%2B%5Csqrt%7B4-x" id="TexFormula1" title="\sqr\sqrt4-x +\sqrt{4-x" alt="\s
tankabanditka [31]

-2-x+\sqrt{-x+4}

8 0
3 years ago
Other questions:
  • What is the greatest common factor of 24 and 36
    12·2 answers
  • Calculate the sum of the infinite series
    9·2 answers
  • If you are at school, then you are working hard.
    13·1 answer
  • 1. Rotate Ali the Alien 180°. Be sure to identify your center<br><br> of rotation.
    13·1 answer
  • Use the distributive property to simplify 4/5(1 -4m) completely
    6·2 answers
  • Kate is making a pasta salad for her family party. She has 3 pounds of pasta salad to serve 12 people. She wants to give an equa
    6·1 answer
  • ASPA.... PLS HELP
    15·2 answers
  • Simplify the expression<br> -6 - 6f + 7 - 3f - 9.
    5·1 answer
  • Which of the following parabolas opens down?
    9·1 answer
  • Can anyone help me with this?<br> Find the missing angle measure.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!