Answer:
C_{y} = 4.96 and θ' = 104,5º
Explanation:
To add several vectors we can decompose each one of them, perform the sum on each axis, to find the components of the resultant and then find the module and direction.
Let's start by decomposing the two vectors.
Vector A
sin θ =
/ A
cos θ = Aₓ / A
A_{y} = A sin θ
Ax = A cos θ
A_{y} = 4.9 sin 31 = 2.52
Ax = 4.9 cos 31 = 4.20
Vector B
B_{y} = B sin θ
Bx = B cos θ
B_{y} = 6 sin 156 = 2.44
Bx = 6 cos 156 = -5.48
The components of the resulting vector are
X axis
Cx = Ax + B x
Cx = 4.20 -5.48
Cx = -1.28
Axis y
C_{y} = Ay + By
C_{y} = 2.52 + 2.44
C_{y} = 4.96
Let's use the Pythagorean theorem to find modulo
C = √ (Cₙ²x2 + Cy2)
C = Ra (1.28 2 + 4.96 2)
C = 5.12
We use trigonemetry to find the angle
tan θ = C_{y} / Cₓ
θ’ = tan⁻¹ (4.96 / (1.28))
θ’ = 75.5
como el valor de Cy es positivo y Cx es negativo el angulo este en el segundo cuadrante, por lo cual el angulo medido respecto de eje x positivo es
θ’ = 180 – tes
θ‘= 180 – 75,5
θ' = 104,5º
Explanation:
The given data is as follows.
C =
R =
ohm
C
Q =
Formula to calculate the time is as follows.
0.135 =
= 7.407
t = 4.00 s
Therefore, we can conclude that time after the resistor is connected will the capacitor is 4.0 sec.
<span>P = energy/t = 0.0025/1E-8 = 250000 W
I(ave) = P/A = 250000/(pi*0.425E-3^2) = 4.4056732E11 W/m^2
I(peak) = 2I(ave) = 8.8113463E11 W/m^2
Electric field E = sqrt(I(peak)*Z0) = 1.8219499E7 V/m, where
free-space impedance Z0 = sqrt(µ0/e0) = 376.73031 ohms</span>
<span>Diamond slowdown light more than Quartz , because diamonds have a greater index of refraction. Light will bend when its move from one medium to another. The Index of Refraction of Material is found by comparing the speed of light in their respective mediums.</span>