Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:
A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Answer:
ΔP=20 kg.m/s
Explanation:
Given data
Mass m=0.2 kg
Initial speed Vi=-44.5m/s
Final speed Vf=55.5 m/s
Required
Change in momentum ΔP
Solution
First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

Now we need to find the initial momentum
So

Substitute the given values

Now for final momentum

So the change in momentum is given as:
ΔP=P₂-P₁
![=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s](https://tex.z-dn.net/?f=%3D%5B%2811.1kg.m%2Fs%29-%28-8.9kg.m%2Fs%29%5D%5C%5C%3D20kg.m%2Fs)
ΔP=20 kg.m/s
The air particle inside the balloon will collide more with each other and the temperature inside the balloon will increase.
As a person squeezed and applies the pressure to the outside of a balloon, the air particle inside the balloon gains energy and collide with each other, the particle of the air also try leave the balloon surface will implies equal pressure on the wall of the balloon, as the pressure outside the balloon increase, the inside pressure will also increase.
Answer:=14,160 kJ
Explanation: Let m1 and m2 be the initial and final amounts of mass within the tank, respectively. The steam properties are listed in the table below
Specific Internal SpecificTemp Pressure Volume Energy Enthalpy Quality Phase
C MPa m^3/kg kJ/kg kJ/kg
1 260 4.689 0.02993 2158 2298 0.7 Liquid Vapor Mixture
2 260 4.689 0.0422 2599 2797 1 Saturated Vapor
The mass initially contained in the tank is m1 = V/v1
m1 =0.85 m^3 /0.02993 m^3 /kg
= 28.4 kg
The mass finally contained in the tank is
m2 =V2/v
= 0.85 m^3 /0.0422 m^3 /kg
= 20.14 kg
The heat transfer is then
Qcv = m2u2 − m1u1 − he(m2 − m1)
Qcv = (20.14)(2599) − (28.4)(2158) − (2797)(20.14 − 28.4) = 14,160 kJ
Answer:
Lithium Fluoride
One lithium atom can combine with one fluorine (F) atom. Together, they make the formula LiF. Fluorine has seven electrons of it's own. Lithium gives up its one electron to make both atoms happy.
Explanation: