Fulcrum need to be positioned balanced with weight on both the sides following law of lever.
What is the physical law of the lever?
- It is the foundation for issues with weight and balance. According to this rule, a lever is balanced when the weight multiplied by the arm on one side of the fulcrum, which serves as the pivot point for the device, equals the weight multiplied by the arm on the opposing side.
- The lever is balanced, in other words, when the sum of the moments about the fulcrum is zero.
- The situation in which the positive moments (those attempting to turn the lever clockwise) equal the negative moments is known as this (those that try to rotate it counterclockwise).
- Moving the weights closer to or away from the fulcrum, as well as raising or lowering the weights, can alter the balance point, or CG, of the lever.
Learn more about the Fulcrum with the help of the given link:
brainly.com/question/16422662
#SPJ4
ELECTROSTATIC:
relating to stationary electric charges or fields as opposed to electric currents.
NEUTRAL:
nor negative nor positive/having no charge
POSITIVELY CHARGED:
positive charge occurs when the number of protons exceeds the number of electrons
NEGATIVELY CHARGED:
negative charge occurs when the number of electrons exceeds the number of protons.
COULOMB:
SI unit for electric charge. One coulomb is equal to the amount of charge from a current of one ampere flowing for one second.
MICROCOULOMB:
a unit of electrical charge equal to one millionth of a coulomb.
NANOCOULOMB:
Nanocoulombs are a unit of charge 1,000,000,000 times smaller than Coulomb.
CONSERVATION OF CHARGE:
constancy of the total electric charge in the universe or in any specific chemical or nuclear reaction
QUANTISATION OF CHARGE:
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge.
Answer:
<em> B.0</em>
Explanation:
Change in momentum: This is defined as the product of mass and change in velocity of a body. or it can be defined as the product of force and time of a body. The fundamental unit of change in momentum is kg.m/s
Change in momentum = M(V-U)......................... Equation 1
where M = mass of the ball, V = final velocity of the ball, U = initial velocity of the ball.
Let: M = m kg and V = U = v m/s
Substituting these values into equation 1
Change in momentum = m(v-v)
Change in momentum = m(0)
Change in momentum = 0 kg.m/s
<em>Therefore the momentum of the ball has not changed.</em>
<em>The right option is B.0</em>
Answer:
Energy expenditure in K cals/min = 10 K cals /min (approximately)
Explanation:
As we know
Energy expenditure in Kcal/min= METs x 3.5 x Body weight (kg) / 200
Given is METs=7.6
Weight of Jazz= 172lb=78.02kg
putting the values in formula,
Energy expenditure in K cals/min= 7.6 x 3.5 x 78.02 / 200
=10.38 K cals /min
=10 K cals /min (approximately)
Therefore, Energy expenditure in K cals/min by Jazz will be approximately 10 K cals /min
Answer:
Mass doesn't change.
Weight is measured based on gravitational pull.
Explanation: