Explanation:
I remember that notation! The expression

is the 1st law of thermodynamics and it refers to the heat supplied to the system dQ which is also a change in its internal energy dU. The first term is the <u>partial</u> derivative of the internal energy U with respect to temperature T while the volume V is kept constant, as denoted by the subscript V. The 2nd term is similar but this time, temperature is kept constant while its volume partial derivative is being taken.
Ah, memories!
Using the equation v(avg)=distance/time
and the equation v=v(original)+a(t)
solve for acceleration
2600=0+a(12)
a=216.66666 m/s^2
Then, you use the equation
v^2=v(original)+2a*(change in x)
2600^2=2(216.666666)*change in x
6760000/2/216.666666 = 15600 meters which is the length of the race
Then using v(avg)=x/t
15600/12= 1300 m/s
Answer:
the si unit of electric current is Ampere .the flow of charge in a close circuit is called electric current
Answer:
a)11.25 J
b)Number of revolution = 1
Explanation:
Given that
Radius ,r= 0.8 m
m= 0.3 kg
Initial speed ,u= 10 m/s
final speed ,v= 5 m/s
a)
Initial energy


KEi= 15 J
Final kinetic energy


KEf=3.75 J
The energy transformed from mechanical to internal = 15 - 3.75 J = 11.25 J
b)
The minimum value to complete the circular arc

Now by putting the values

V= 2.82 m/s
So kinetic energy KE


KE=1.19 J
ΔKE= KEi - KE
ΔKE= 15- 1.19 J
ΔKE=13.80 J
The minimum energy required to complete 2 revolutions = 2 x 11.25 J
= 22.5 J
Here 22.5 J is greater than 13.8 J.So the particle will complete only one revolution.
Number of revolution = 1
We can find the volume of a small
pebble with the help of measuring cylinder by using the water displacement
method. <span>The </span>water displacement method<span> <span>is the
process of measuring the volume of an irregularly shaped object by immersing it
in water. </span></span>I am
hoping that this answer has satisfied your query and it will be able to help
you in your endeavor, and if you would like, feel free to ask another question.