Answer:
C. Why you must push harder to move a car farther.
Explanation:
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Hence, Newton's 2nd Law explains why you must push harder to move a car farther because of its mass. Thus, it is important to increase the force that the engine provides and decrease the mass of the car.
Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves.
Answer:
A= 148.92 m/s²
Explanation:
Given that
U(x,y) = (6.00 )x² - (3.75 )y ³
m= 0.04 kg
Now force in the x-direction
Fx= - dU/dx
U(x,y) = (6.00 )x² - (3.75 )y ³
dU/dx= 12 x
When x=0.4 m
dU/dx= 12 x 0.4 = 4.8
So we can say that
Fx= - 4.8 N
From Newtons law
F= m a
- 4.8 = 0.04 x a
a = -120 m/s²
Acceleration in x direction ,a = -120 m/s²
In y -direction
F= - dU/dy
U(x,y) = (6.00 )x² - (3.75 )y ³
dU/dy = 0 - 3.75 x 3 y²
When y = 0.56 m
dU/dy = - 3.75 x 3 x 0.56 x 0.56
dU/dy = - 3.52
So we can say that force in y -direction
F= 3.52 N
F= m a'
3.52 = 0.04 x a'
a'=88.2 m/s²
acceleration in y direction is 88.2 m/s²
The resultant acceleration


A= 148.92 m/s²
Yes, C is correct. It self explains itself as we know light travels through a vacuum ( doesn't need a medium) and light is a type of electromagnetic wave.